Complete the equation describing how [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are related.

[tex]\[
\begin{array}{l|l}
x & y \\
\hline
-3 & -5 \\
-2 & -1 \\
-1 & 3 \\
0 & 7 \\
1 & 11 \\
2 & 15 \\
\end{array}
\][/tex]

Enter the equation.



Answer :

Alright, let's look at the given data points which represent the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:

[tex]\[ \begin{array}{c|c} x & y \\ \hline -3 & -5 \\ -2 & -1 \\ -1 & 3 \\ 0 & 7 \\ 1 & 11 \\ 2 & 15 \\ \end{array} \][/tex]

First, we observe the differences between consecutive [tex]\(y\)[/tex]-values to see if there is a recognizable pattern. Calculate the differences:

[tex]\[ \begin{align*} -1 - (-5) &= 4, \\ 3 - (-1) &= 4, \\ 7 - 3 &= 4, \\ 11 - 7 &= 4, \\ 15 - 11 &= 4. \end{align*} \][/tex]

The differences between consecutive [tex]\(y\)[/tex]-values are constant (all equal to 4), suggesting a linear relationship of the form:

[tex]\[ y = mx + c \][/tex]

Next, we determine the slope ([tex]\(m\)[/tex]) of the line. Since the differences in [tex]\(y\)[/tex]-values are all 4, the slope is:

[tex]\[ m = 4 \][/tex]

Now, we need to find the y-intercept ([tex]\(c\)[/tex]). We use one of the given data points to solve for [tex]\(c\)[/tex]. Let's use the point [tex]\((0, 7)\)[/tex]:

[tex]\[ 7 = 4 \cdot 0 + c \implies c = 7 \][/tex]

Thus, the linear equation that describes the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] is:

[tex]\[ y = 4x + 7 \][/tex]

So the completed equation is:

[tex]\[ \boxed{y = 4x + 7} \][/tex]