Answer :

To evaluate [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex] for [tex]\(x = -3\)[/tex], follow these steps:

1. Identify the values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:
- Let's assume [tex]\(m = 1\)[/tex].
- Let's assume [tex]\(n = 1\)[/tex].

2. Substitute [tex]\(m\)[/tex], [tex]\(n\)[/tex], and [tex]\(x\)[/tex] into the expression [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex]:
[tex]\[ \left(\frac{m}{n}\right)(x) = \left(\frac{1}{1}\right)(-3) \][/tex]

3. Simplify the fraction [tex]\(\frac{m}{n}\)[/tex]:
[tex]\[ \frac{1}{1} = 1 \][/tex]

4. Multiply the simplified fraction by [tex]\(x\)[/tex]:
[tex]\[ 1 \cdot (-3) = -3 \][/tex]

Thus, the result is:
[tex]\[ \boxed{-3} \][/tex]