To evaluate [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex] for [tex]\(x = -3\)[/tex], follow these steps:
1. Identify the values of [tex]\(m\)[/tex] and [tex]\(n\)[/tex]: - Let's assume [tex]\(m = 1\)[/tex]. - Let's assume [tex]\(n = 1\)[/tex].
2. Substitute [tex]\(m\)[/tex], [tex]\(n\)[/tex], and [tex]\(x\)[/tex] into the expression [tex]\(\left(\frac{m}{n}\right)(x)\)[/tex]: [tex]\[
\left(\frac{m}{n}\right)(x) = \left(\frac{1}{1}\right)(-3)
\][/tex]
3. Simplify the fraction [tex]\(\frac{m}{n}\)[/tex]: [tex]\[
\frac{1}{1} = 1
\][/tex]
4. Multiply the simplified fraction by [tex]\(x\)[/tex]: [tex]\[
1 \cdot (-3) = -3
\][/tex]