Which expression is equivalent to [tex]\log _w \frac{\left(x^2-6\right)^4}{\sqrt[3]{x^2+8}}[/tex]?

A. [tex]4 \log _w \frac{x^2}{1296}-\frac{1}{3} \log _w(2 x+8)[/tex]

B. [tex]4 \log _w\left(x^2-6\right)-3 \log _w\left(x^2+8\right)[/tex]

C. [tex]4 \log _w\left(x^2-6\right)-\frac{1}{3} \log _w\left(x^2+8\right)[/tex]

D. [tex]4\left(\log _w x^2-\frac{1}{3} \log _w\left(x^2+8\right)-6\right)[/tex]



Answer :

To solve the problem of finding an equivalent expression for the logarithmic expression [tex]\(\log_w \frac{(x^2-6)^4}{\sqrt[3]{x^2+8}}\)[/tex], follow these steps:

1. Use the logarithmic property for division inside a logarithm:
[tex]\[ \log_b \left(\frac{a}{c}\right) = \log_b(a) - \log_b(c) \][/tex]
Applying this to our expression:
[tex]\[ \log_w \frac{(x^2-6)^4}{\sqrt[3]{x^2+8}} = \log_w \left((x^2 - 6)^4\right) - \log_w \left(\sqrt[3]{x^2 + 8}\right) \][/tex]

2. Use the logarithmic property for exponents:
[tex]\[ \log_b(a^n) = n \log_b(a) \][/tex]
Applying this to our expression:
[tex]\[ \log_w \left((x^2 - 6)^4\right) = 4 \log_w (x^2 - 6) \][/tex]
and
[tex]\[ \log_w \left(\sqrt[3]{x^2 + 8}\right) = \log_w \left((x^2 + 8)^{1/3}\right) = \frac{1}{3} \log_w (x^2 + 8) \][/tex]

3. Combine the results from steps 1 and 2:
[tex]\[ \log_w \frac{(x^2-6)^4}{\sqrt[3]{x^2+8}} = 4 \log_w (x^2 - 6) - \frac{1}{3} \log_w(x^2 + 8) \][/tex]

Thus, the equivalent expression is:
[tex]\[ 4 \log_w (x^2 - 6) - \frac{1}{3} \log_w (x^2 + 8) \][/tex]

Next, let's match this result with one of the provided options:

- Option 1:
[tex]\[ 4 \log_w \frac{x^2}{1296} - \frac{1}{3} \log_w (2x + 8) \][/tex]
This does not match our derived expression.

- Option 2:
[tex]\[ 4 \log_w (x^2 - 6) - 3 \log_w (x^2 + 8) \][/tex]
This does not match our derived expression.

- Option 3:
[tex]\[ 4 \log_w (x^2 - 6) - \frac{1}{3} \log_w (x^2 + 8) \][/tex]
This matches our derived expression exactly.

- Option 4:
[tex]\[ 4 (\log_w x^2 - \frac{1}{3} \log_w (x^2 + 8) - 6) \][/tex]
This does not match our derived expression.

Therefore, the expression that is equivalent to [tex]\(\log_w \frac{(x^2-6)^4}{\sqrt[3]{x^2+8}}\)[/tex] is:
[tex]\[ 4 \log_w (x^2 - 6) - \frac{1}{3} \log_w (x^2 + 8) \][/tex]

And the correct option number is 3.