Which expression can be used to find the surface area of the trapezoidal prism?

[tex]\[ 6 \cdot 3 + 6 \cdot 4 + 6 \cdot 5 + 6 \cdot 8 + 2\left[3 \cdot 4 + \frac{1}{2}(3 \cdot 4)\right] \][/tex]

What is the surface area of the trapezoidal prism?

[tex]\[ \text{S.A.} = \, \square \, \text{ft}^2 \][/tex]



Answer :

To find the surface area of the trapezoidal prism, we need to evaluate the given expression:

[tex]\[ 6 \cdot 3 + 6 \cdot 4 + 6 \cdot 5 + 6 \cdot 8 + 2 \left( 3 \cdot 4 + \frac{1}{2} (3 \cdot 4) \right) \][/tex]

Let's break this down step-by-step.

1. Calculate each multiplication term individually:

[tex]\[ 6 \cdot 3 = 18 \][/tex]

[tex]\[ 6 \cdot 4 = 24 \][/tex]

[tex]\[ 6 \cdot 5 = 30 \][/tex]

[tex]\[ 6 \cdot 8 = 48 \][/tex]

2. Evaluate the expression inside the parentheses:

[tex]\[ 3 \cdot 4 = 12 \][/tex]

Then find half of this value:

[tex]\[ \frac{1}{2} (3 \cdot 4) = \frac{1}{2} \cdot 12 = 6 \][/tex]

Sum these two results inside the parentheses:

[tex]\[ 3 \cdot 4 + \frac{1}{2} (3 \cdot 4) = 12 + 6 = 18 \][/tex]

Multiply this result by 2:

[tex]\[ 2 \left( 3 \cdot 4 + \frac{1}{2} (3 \cdot 4) \right) = 2 \cdot 18 = 36 \][/tex]

3. Add all the individual results together:

[tex]\[ 18 + 24 + 30 + 48 + 36 = 156 \][/tex]

So, the surface area (S.A.) of the trapezoidal prism is:

[tex]\[ \boxed{156} \, \text{ft}^2 \][/tex]