Answer :
Let's solve the given equation step by step:
1. Step 1: Write down the equation.
Given the equation:
[tex]\[ 5c - 2 = 3c \][/tex]
2. Step 2: Isolate the term containing [tex]\( c \)[/tex] on one side.
To do this, subtract [tex]\( 3c \)[/tex] from both sides of the equation:
[tex]\[ 5c - 3c - 2 = 0 \][/tex]
3. Step 3: Simplify the equation.
Combine the like terms:
[tex]\[ 2c - 2 = 0 \][/tex]
4. Step 4: Isolate [tex]\( c \)[/tex].
Add 2 to both sides to isolate the term with [tex]\( c \)[/tex]:
[tex]\[ 2c = 2 \][/tex]
5. Step 5: Solve for [tex]\( c \)[/tex].
Divide both sides by 2:
[tex]\[ c = \frac{2}{2} = 1 \][/tex]
6. Step 6: Calculate [tex]\( 24c \)[/tex].
Substitute the value of [tex]\( c \)[/tex] into [tex]\( 24c \)[/tex]:
[tex]\[ 24c = 24 \times 1 = 24 \][/tex]
So, the value of [tex]\( 24c \)[/tex] is [tex]\( 24 \)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{24} \][/tex]
1. Step 1: Write down the equation.
Given the equation:
[tex]\[ 5c - 2 = 3c \][/tex]
2. Step 2: Isolate the term containing [tex]\( c \)[/tex] on one side.
To do this, subtract [tex]\( 3c \)[/tex] from both sides of the equation:
[tex]\[ 5c - 3c - 2 = 0 \][/tex]
3. Step 3: Simplify the equation.
Combine the like terms:
[tex]\[ 2c - 2 = 0 \][/tex]
4. Step 4: Isolate [tex]\( c \)[/tex].
Add 2 to both sides to isolate the term with [tex]\( c \)[/tex]:
[tex]\[ 2c = 2 \][/tex]
5. Step 5: Solve for [tex]\( c \)[/tex].
Divide both sides by 2:
[tex]\[ c = \frac{2}{2} = 1 \][/tex]
6. Step 6: Calculate [tex]\( 24c \)[/tex].
Substitute the value of [tex]\( c \)[/tex] into [tex]\( 24c \)[/tex]:
[tex]\[ 24c = 24 \times 1 = 24 \][/tex]
So, the value of [tex]\( 24c \)[/tex] is [tex]\( 24 \)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{24} \][/tex]