Which of the following is the simplified form of [tex] \sqrt[7]{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x} [/tex]?

A. [tex] x^{\frac{3}{21}} [/tex]
B. [tex] x^{\frac{3}{7}} [/tex]
C. [tex] x^{\frac{1}{7}} [/tex]
D. [tex] \sqrt[21]{x} [/tex]



Answer :

To simplify the expression [tex]\({ }^7 \sqrt{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex], let's go through it step-by-step.

1. Rewrite each term in exponent form:
- [tex]\({ }^7 \sqrt{x}\)[/tex] is the same as [tex]\(x^{\frac{1}{7}}\)[/tex]
- [tex]\(\sqrt[7]{x}\)[/tex] is also [tex]\(x^{\frac{1}{7}}\)[/tex]
- The second [tex]\(\sqrt[7]{x}\)[/tex] is similarly [tex]\(x^{\frac{1}{7}}\)[/tex]

Thus, the original expression is [tex]\(x^{\frac{1}{7}} \cdot x^{\frac{1}{7}} \cdot x^{\frac{1}{7}}\)[/tex].

2. Combine the exponents:
- Recall the property of exponents: [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]
- Apply this property to our expression:
[tex]\[ x^{\frac{1}{7}} \cdot x^{\frac{1}{7}} \cdot x^{\frac{1}{7}} = x^{\frac{1}{7} + \frac{1}{7} + \frac{1}{7}} \][/tex]
- Add the exponents:
[tex]\[ \frac{1}{7} + \frac{1}{7} + \frac{1}{7} = \frac{3}{7} \][/tex]

3. Simplified form:
[tex]\[ x^{\frac{3}{7}} \][/tex]

Thus, the simplified form of [tex]\({ }^7 \sqrt{x} \cdot \sqrt[7]{x} \cdot \sqrt[7]{x}\)[/tex] is [tex]\(\boxed{x^{\frac{3}{7}}}\)[/tex].