Answer :

Certainly! Let's solve the equation step-by-step to find the value of [tex]\( m \)[/tex].

The given equation is:

[tex]\[ \frac{m}{n} + 5m = 20 \][/tex]

First, we'll combine the terms involving [tex]\( m \)[/tex] on one side of the equation:

[tex]\[ \frac{m}{n} + 5m = 20 \][/tex]

To combine the terms, we can factor [tex]\( m \)[/tex] out of the left side. However, let's first bring the fractions to a common denominator:

[tex]\[ \frac{m}{n} + 5m = \frac{m}{n} + \frac{5mn}{n} = \frac{m + 5mn}{n} \][/tex]

Now, rewrite the equation:

[tex]\[ \frac{m + 5mn}{n} = 20 \][/tex]

To clear the fraction, multiply both sides by [tex]\( n \)[/tex]:

[tex]\[ m + 5mn = 20n \][/tex]

Now we want to isolate [tex]\( m \)[/tex]. To do this, factor [tex]\( m \)[/tex] out from the left side:

[tex]\[ m (1 + 5n) = 20n \][/tex]

Now, solve for [tex]\( m \)[/tex] by dividing both sides by [tex]\( 1 + 5n \)[/tex]:

[tex]\[ m = \frac{20n}{1 + 5n} \][/tex]

Hence, the solution for [tex]\( m \)[/tex] in terms of [tex]\( n \)[/tex] is:

[tex]\[ m = \frac{20n}{1 + 5n} \][/tex]

So the value of [tex]\( m \)[/tex] is [tex]\( \frac{20n}{1 + 5n} \)[/tex].