Midpoint formula: [tex]\text{Midpoint} = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)[/tex]

For questions 1-3, write the midpoint of the segment as an ordered pair.

1. [tex]\left(x_2, y_2\right)[/tex]



Answer :

Certainly, let's find the midpoint of the segment given some coordinates in a detailed, step-by-step manner.

### Given Points:
Let's denote the two points as [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex].

### Coordinates:
We have:
- Point 1: [tex]\((x_1, y_1) = (2, 3)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (4, 5)\)[/tex]

### Step-by-Step Solution using the Midpoint Formula:
The midpoint formula is:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

So,

1. Calculate the midpoint for the [tex]\(x\)[/tex]-coordinates:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{2 + 4}{2} = \frac{6}{2} = 3.0 \][/tex]

2. Calculate the midpoint for the [tex]\(y\)[/tex]-coordinates:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{3 + 5}{2} = \frac{8}{2} = 4.0 \][/tex]

### Midpoint:
Thus, the midpoint of the segment is [tex]\((3.0, 4.0)\)[/tex].

### Final Answer:
[tex]\[ \boxed{(3.0, 4.0)} \][/tex]

This ordered pair [tex]\((3.0, 4.0)\)[/tex] is the midpoint of the segment joining the given points [tex]\((2, 3)\)[/tex] and [tex]\((4, 5)\)[/tex].