Certainly, let's find the midpoint of the segment given some coordinates in a detailed, step-by-step manner.
### Given Points:
Let's denote the two points as [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex].
### Coordinates:
We have:
- Point 1: [tex]\((x_1, y_1) = (2, 3)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (4, 5)\)[/tex]
### Step-by-Step Solution using the Midpoint Formula:
The midpoint formula is:
[tex]\[
\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\][/tex]
So,
1. Calculate the midpoint for the [tex]\(x\)[/tex]-coordinates:
[tex]\[
\frac{x_1 + x_2}{2} = \frac{2 + 4}{2} = \frac{6}{2} = 3.0
\][/tex]
2. Calculate the midpoint for the [tex]\(y\)[/tex]-coordinates:
[tex]\[
\frac{y_1 + y_2}{2} = \frac{3 + 5}{2} = \frac{8}{2} = 4.0
\][/tex]
### Midpoint:
Thus, the midpoint of the segment is [tex]\((3.0, 4.0)\)[/tex].
### Final Answer:
[tex]\[
\boxed{(3.0, 4.0)}
\][/tex]
This ordered pair [tex]\((3.0, 4.0)\)[/tex] is the midpoint of the segment joining the given points [tex]\((2, 3)\)[/tex] and [tex]\((4, 5)\)[/tex].