8. [tex]-\operatorname{Si}: \operatorname{Tan} \theta = 0.333 \quad[/tex]
Calcula: [tex]E = \operatorname{Sen} \theta \cdot \operatorname{Cos} \theta[/tex].

A. [tex]\frac{2}{10}[/tex]
B. [tex]\frac{3}{10}[/tex]
C. [tex]\frac{10}{3}[/tex]
D. 5
E. N.A



Answer :

To solve the problem of finding [tex]\( E = \sin(\theta) \cos(\theta) \)[/tex] given [tex]\(\tan(\theta) = 0.333\)[/tex], we need to follow a series of steps.

1. Find [tex]\(\theta\)[/tex]:
We begin by identifying the angle [tex]\(\theta\)[/tex] such that [tex]\(\tan(\theta) = 0.333\)[/tex]. This implies we need to find [tex]\(\theta = \arctan(0.333)\)[/tex].

With this, we get:
[tex]\[ \theta = \arctan(0.333) \approx 0.3214505244026446 \text{ radians} \][/tex]

2. Calculate [tex]\(\sin(\theta)\)[/tex]:
Next, we need the sine of the angle [tex]\(\theta\)[/tex]:
[tex]\[ \sin(\theta) = \sin(0.3214505244026446) \approx 0.31594311834379357 \][/tex]

3. Calculate [tex]\(\cos(\theta)\)[/tex]:
Similarly, we need the cosine of the angle [tex]\(\theta\)[/tex]:
[tex]\[ \cos(\theta) = \cos(0.3214505244026446) \approx 0.9487781331645453 \][/tex]

4. Calculate [tex]\(E = \sin(\theta) \cos(\theta)\)[/tex]:
Finally, we compute the product [tex]\(E\)[/tex]:
[tex]\[ E = \sin(\theta) \cos(\theta) = 0.31594311834379357 \times 0.9487781331645453 \approx 0.29975992200840945 \][/tex]

5. Determine the Correct Option:
Comparing the numerical result with the given options:

[tex]\[ 0.29975992200840945 \approx \frac{3}{10} = 0.3 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{\frac{3}{10}} \][/tex]