Which table represents the same relation as the set [tex]\{(-6,4),(-4,0),(-3,2),(-1,2)\}[/tex]?

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-6 & -3 \\
\hline
4 & 2 \\
\hline
-4 & -1 \\
\hline
0 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-6 & 4 \\
\hline
-4 & 0 \\
\hline
-3 & 2 \\
\hline
-1 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
6 & 4 \\
\hline
4 & 0 \\
\hline
3 & 2 \\
\hline
1 & 2 \\
\hline
\end{tabular}



Answer :

To determine which table represents the same relation as the given set of points [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex], we need to examine each table and compare its entries with the given set.

Let's look at each table individually.

### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & -3 \\ \hline 4 & 2 \\ \hline -4 & -1 \\ \hline 0 & 2 \\ \hline \end{array} \][/tex]

Looking at the pairs in this table:
[tex]\[ (-6, -3), (4, 2), (-4, -1), (0, 2) \][/tex]

These pairs are not the same as any of the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].

### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]

Looking at the pairs in this table:
[tex]\[ (-6, 4), (-4, 0), (-3, 2), (-1, 2) \][/tex]

These pairs match exactly with the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].

### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 4 \\ \hline 4 & 0 \\ \hline 3 & 2 \\ \hline 1 & 2 \\ \hline \end{array} \][/tex]

Looking at the pairs in this table:
[tex]\[ (6, 4), (4, 0), (3, 2), (1, 2) \][/tex]

These pairs do not match the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].

Upon careful comparison, Table 2 is the one that matches the given set of points.

Therefore, the table that represents the same relation as the given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex] is:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]

So the correct answer is Table 2.