Answer :
To determine which table represents the same relation as the given set of points [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex], we need to examine each table and compare its entries with the given set.
Let's look at each table individually.
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & -3 \\ \hline 4 & 2 \\ \hline -4 & -1 \\ \hline 0 & 2 \\ \hline \end{array} \][/tex]
Looking at the pairs in this table:
[tex]\[ (-6, -3), (4, 2), (-4, -1), (0, 2) \][/tex]
These pairs are not the same as any of the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]
Looking at the pairs in this table:
[tex]\[ (-6, 4), (-4, 0), (-3, 2), (-1, 2) \][/tex]
These pairs match exactly with the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 4 \\ \hline 4 & 0 \\ \hline 3 & 2 \\ \hline 1 & 2 \\ \hline \end{array} \][/tex]
Looking at the pairs in this table:
[tex]\[ (6, 4), (4, 0), (3, 2), (1, 2) \][/tex]
These pairs do not match the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].
Upon careful comparison, Table 2 is the one that matches the given set of points.
Therefore, the table that represents the same relation as the given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex] is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]
So the correct answer is Table 2.
Let's look at each table individually.
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & -3 \\ \hline 4 & 2 \\ \hline -4 & -1 \\ \hline 0 & 2 \\ \hline \end{array} \][/tex]
Looking at the pairs in this table:
[tex]\[ (-6, -3), (4, 2), (-4, -1), (0, 2) \][/tex]
These pairs are not the same as any of the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]
Looking at the pairs in this table:
[tex]\[ (-6, 4), (-4, 0), (-3, 2), (-1, 2) \][/tex]
These pairs match exactly with the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 4 \\ \hline 4 & 0 \\ \hline 3 & 2 \\ \hline 1 & 2 \\ \hline \end{array} \][/tex]
Looking at the pairs in this table:
[tex]\[ (6, 4), (4, 0), (3, 2), (1, 2) \][/tex]
These pairs do not match the pairs in our given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].
Upon careful comparison, Table 2 is the one that matches the given set of points.
Therefore, the table that represents the same relation as the given set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex] is:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]
So the correct answer is Table 2.