Home > MAT129 - INE7 - Summer [tex]$24 \ \textgreater \ $[/tex] Assessment

HW - Ch 9

Score: 13.75/20
Answered: 12/20

Question 15

Solve [tex]$2 \cos ^2(t)+\cos(t)-1=0$[/tex] for all solutions [tex]$0 \leq t \ \textless \ 2\pi$[/tex].

[tex]$t = \square$[/tex]

Give your answers as exact values in a list separated by commas.

Question Help: [tex]$\square$[/tex] Video

Submit Question



Answer :

To solve the equation [tex]\(2 \cos^2(t) + \cos(t) - 1 = 0\)[/tex] for all solutions [tex]\(0 \leq t < 2\pi\)[/tex], follow these steps:

1. Convert the equation to a quadratic form:

Let [tex]\( u = \cos(t) \)[/tex]. The equation then becomes:
[tex]\[ 2u^2 + u - 1 = 0 \][/tex]

2. Solve the quadratic equation:

The quadratic equation [tex]\(2u^2 + u - 1 = 0\)[/tex] can be solved using the quadratic formula, [tex]\(u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:

Here, [tex]\(a = 2\)[/tex], [tex]\(b = 1\)[/tex], and [tex]\(c = -1\)[/tex].
[tex]\[ u = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot -1}}{2 \cdot 2} = \frac{-1 \pm \sqrt{1 + 8}}{4} = \frac{-1 \pm \sqrt{9}}{4} = \frac{-1 \pm 3}{4} \][/tex]

Thus, the solutions for [tex]\(u\)[/tex] are:
[tex]\[ u = \frac{-1 + 3}{4} = \frac{2}{4} = \frac{1}{2} \][/tex]
[tex]\[ u = \frac{-1 - 3}{4} = \frac{-4}{4} = -1 \][/tex]

3. Convert back to [tex]\( \cos(t) \)[/tex]:

Now we have [tex]\( \cos(t) = \frac{1}{2} \)[/tex] and [tex]\( \cos(t) = -1 \)[/tex].

4. Find [tex]\( t \)[/tex] values within the given interval [tex]\( [0, 2\pi) \)[/tex]:

- For [tex]\( \cos(t) = \frac{1}{2} \)[/tex]:
[tex]\[ t = \frac{\pi}{3}, \quad t = \frac{5\pi}{3} \][/tex]
Because [tex]\( \cos(t) = \frac{1}{2} \)[/tex] at [tex]\( t = \frac{\pi}{3} \)[/tex] and [tex]\( t = 2\pi - \frac{\pi}{3} = \frac{5\pi}{3} \)[/tex].

- For [tex]\( \cos(t) = -1 \)[/tex]:
[tex]\[ t = \pi \][/tex]
Because [tex]\( \cos(t) = -1 \)[/tex] at [tex]\( t = \pi \)[/tex].

5. Combine all the solutions:

Therefore, the solutions for [tex]\( 0 \leq t < 2\pi \)[/tex] are:
[tex]\[ t = \pi, \quad t = \frac{\pi}{3}, \quad t = \frac{5\pi}{3} \][/tex]

So, the exact values as a list separated by commas are:
[tex]\[ t = \pi, \frac{\pi}{3}, \frac{5\pi}{3} \][/tex]