Which expression represents the number [tex]i^4 + \sqrt{-81} + i^2 + \sqrt{-36}[/tex] rewritten in [tex]a + bi[/tex] form?

A. [tex]-15 + 0i[/tex]
B. [tex]0 + 15i[/tex]
C. [tex]-1 + 15i[/tex]
D. [tex]-2 + 15i[/tex]



Answer :

To solve the expression [tex]\(i^4 + \sqrt{-81} + i^2 + \sqrt{-36}\)[/tex] and rewrite it in the form [tex]\(a + bi\)[/tex], we will break down each component and evaluate it step by step.

First, we need to evaluate each term in the expression:

1. Evaluate [tex]\( i^4 \)[/tex]:

The imaginary unit [tex]\( i \)[/tex] is defined such that [tex]\( i = \sqrt{-1} \)[/tex].
[tex]\[ i^2 = -1 \][/tex]
[tex]\[ i^4 = (i^2)^2 = (-1)^2 = 1 \][/tex]

2. Evaluate [tex]\( \sqrt{-81} \)[/tex]:

Using the property of square roots of negative numbers, we can rewrite:
[tex]\[ \sqrt{-81} = \sqrt{81 \cdot (-1)} = \sqrt{81} \cdot \sqrt{-1} = 9i \][/tex]

3. Evaluate [tex]\( i^2 \)[/tex]:

Using the definition of [tex]\( i \)[/tex]:
[tex]\[ i^2 = -1 \][/tex]

4. Evaluate [tex]\( \sqrt{-36} \)[/tex]:

Similarly:
[tex]\[ \sqrt{-36} = \sqrt{36 \cdot (-1)} = \sqrt{36} \cdot \sqrt{-1} = 6i \][/tex]

Now, let's combine all these terms:

[tex]\[ i^4 + \sqrt{-81} + i^2 + \sqrt{-36} = 1 + 9i - 1 + 6i \][/tex]

We can simplify this by combining like terms (real parts and imaginary parts separately):

- The real parts: [tex]\( 1 - 1 = 0 \)[/tex]
- The imaginary parts: [tex]\( 9i + 6i = 15i \)[/tex]

Thus, the expression simplifies to:

[tex]\[ 0 + 15i \][/tex]

Therefore, the correct answer in the form [tex]\(a + bi\)[/tex] is:

[tex]\[ 0 + 15i \][/tex]

The corresponding option is:

[tex]\[ \boxed{0+15i} \][/tex]