Answer :

To simplify the given expression [tex]\(\frac{x^2 - 4x + 4}{x^2 - 4}\)[/tex], follow these steps:

1. Factor the numerator and the denominator:
- The numerator [tex]\(x^2 - 4x + 4\)[/tex] is a quadratic expression that can be factored. Notice it's a perfect square:
[tex]\[ x^2 - 4x + 4 = (x - 2)^2 \][/tex]
- The denominator [tex]\(x^2 - 4\)[/tex] is a difference of squares. Rewrite it as:
[tex]\[ x^2 - 4 = (x - 2)(x + 2) \][/tex]

2. Rewrite the expression using the factored forms:
[tex]\[ \frac{x^2 - 4x + 4}{x^2 - 4} = \frac{(x - 2)^2}{(x - 2)(x + 2)} \][/tex]

3. Simplify the fraction:
- Notice that [tex]\((x - 2)\)[/tex] is a common factor in the numerator and the denominator. We can cancel one [tex]\((x - 2)\)[/tex] term from both the numerator and the denominator:
[tex]\[ \frac{(x - 2)^2}{(x - 2)(x + 2)} = \frac{x - 2}{x + 2} \][/tex]

4. State the simplified expression:
The simplified form of the given expression is:
[tex]\[ \frac{x - 2}{x + 2} \][/tex]

Hence, the expression [tex]\(\frac{x^2 - 4x + 4}{x^2 - 4}\)[/tex] simplifies to [tex]\(\frac{x - 2}{x + 2}\)[/tex].