Given [tex]\((x-7)^2 = 36\)[/tex], select the values of [tex]\(x\)[/tex].

A. [tex]\(x = 13\)[/tex]
B. [tex]\(x = 1\)[/tex]
C. [tex]\(x = -29\)[/tex]
D. [tex]\(x = 42\)[/tex]



Answer :

To solve the equation [tex]\((x - 7)^2 = 36\)[/tex], let’s follow these steps:

1. Recognize that this equation is a quadratic equation in the form [tex]\((x - a)^2 = b^2\)[/tex], where [tex]\(a = 7\)[/tex] and [tex]\(b^2 = 36\)[/tex]. Therefore, [tex]\(b = 6\)[/tex] or [tex]\(b = -6\)[/tex].

2. Solve the equation by taking the square root of both sides:
[tex]\[ \sqrt{(x - 7)^2} = \sqrt{36} \][/tex]
This gives us:
[tex]\[ |x - 7| = 6 \][/tex]

3. The absolute value equation [tex]\(|x - 7| = 6\)[/tex] leads to two possible cases:
- Case 1: [tex]\(x - 7 = 6\)[/tex]
- Case 2: [tex]\(x - 7 = -6\)[/tex]

4. Solve each case separately:

- For Case 1: [tex]\(x - 7 = 6\)[/tex]
[tex]\[ x = 6 + 7 \][/tex]
[tex]\[ x = 13 \][/tex]

- For Case 2: [tex]\(x - 7 = -6\)[/tex]
[tex]\[ x = -6 + 7 \][/tex]
[tex]\[ x = 1 \][/tex]

So, the solutions to the equation [tex]\((x - 7)^2 = 36\)[/tex] are [tex]\(x = 13\)[/tex] and [tex]\(x = 1\)[/tex].

Now, let's check these against the given options:
- [tex]\(x = 13\)[/tex]: This is one of our solutions.
- [tex]\(x = 1\)[/tex]: This is also one of our solutions.
- [tex]\(x = -29\)[/tex]: This is not a solution.
- [tex]\(x = 42\)[/tex]: This is not a solution.

Therefore, the correct values of [tex]\(x\)[/tex] from the given options are:
[tex]\[ \boxed{13 \text{ and } 1} \][/tex]