Answer :

To find [tex]\(h(-8)\)[/tex] for the function [tex]\(h(t) = -2(t + 5)^2 + 4\)[/tex], we need to follow these steps:

1. Substitute [tex]\(t = -8\)[/tex] into the function:
[tex]\[ h(-8) = -2(-8 + 5)^2 + 4 \][/tex]

2. Simplify the expression inside the parentheses:
[tex]\[ -8 + 5 = -3 \][/tex]

3. Square the result of the simplified expression:
[tex]\[ (-3)^2 = 9 \][/tex]

4. Multiply the squared result by [tex]\(-2\)[/tex]:
[tex]\[ -2 \times 9 = -18 \][/tex]

5. Add 4 to the product:
[tex]\[ -18 + 4 = -14 \][/tex]

Therefore, the value of [tex]\(h(-8)\)[/tex] is:
[tex]\[ -14 \][/tex]

The correct answer is [tex]\(-14\)[/tex].