Choose the slope-intercept form of [tex]3x + 2y = 5[/tex].

A. [tex]y = \frac{3}{2} x - \frac{5}{2}[/tex]
B. [tex]y = -\frac{3}{2} x + \frac{5}{2}[/tex]
C. [tex]y = -\frac{2}{3} x + \frac{5}{3}[/tex]
D. [tex]y = \frac{2}{3} x - \frac{5}{3}[/tex]



Answer :

To convert the given equation [tex]\(3x + 2y = 5\)[/tex] into slope-intercept form, let's follow these steps:

1. Identify the given equation: The equation is [tex]\(3x + 2y = 5\)[/tex].

2. Isolate [tex]\(y\)[/tex]: We need to rearrange the equation to solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex].

[tex]\[ 3x + 2y = 5 \][/tex]

Subtract [tex]\(3x\)[/tex] from both sides to isolate the term with [tex]\(y\)[/tex]:

[tex]\[ 2y = -3x + 5 \][/tex]

3. Solve for [tex]\(y\)[/tex]: Divide every term by 2 to solve for [tex]\(y\)[/tex]:

[tex]\[ y = \frac{-3}{2}x + \frac{5}{2} \][/tex]

Now we have the equation in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.

The result is:

[tex]\[ y = -\frac{3}{2}x + \frac{5}{2} \][/tex]

Thus, the correct choice from the given options is:

[tex]\[ y = -\frac{3}{2}x + \frac{5}{2} \][/tex]