Answer :
To determine which table accurately represents the same relation as the set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex], we need to check each table one by one.
### Given Relation:
The given set of pairs is:
[tex]\[ \{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\} \][/tex]
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & -3 \\ \hline 4 & 2 \\ \hline -4 & -1 \\ \hline 0 & 2 \\ \hline \end{array} \][/tex]
The pairs in Table 1 are:
[tex]\[ \{(-6, -3), (4, 2), (-4, -1), (0, 2)\} \][/tex]
Comparing these pairs to the given set:
- [tex]\((-6, -3) \neq (-6, 4)\)[/tex]
- [tex]\((4, 2) \neq (-4, 0) \text{ or any other pair in the given set}\)[/tex]
- [tex]\((-4, -1) \neq (-4, 0)\)[/tex]
- [tex]\((0, 2) \neq (-1, 2) \text{ or any other pair in the given set}\)[/tex]
We see that none of the pairs match, so Table 1 does not represent the given relation.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]
The pairs in Table 2 are:
[tex]\[ \{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\} \][/tex]
Comparing these pairs to the given set:
- [tex]\((-6, 4) = (-6, 4)\)[/tex]
- [tex]\((-4, 0) = (-4, 0)\)[/tex]
- [tex]\((-3, 2) = (-3, 2)\)[/tex]
- [tex]\((-1, 2) = (-1, 2)\)[/tex]
Each pair matches exactly, so Table 2 represents the given relation.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 4 \\ \hline 4 & 0 \\ \hline 3 & 2 \\ \hline 1 & 2 \\ \hline \end{array} \][/tex]
The pairs in Table 3 are:
[tex]\[ \{(6, 4), (4, 0), (3, 2), (1, 2)\} \][/tex]
Comparing these pairs to the given set:
- [tex]\((6, 4) \neq (-6, 4)\)[/tex]
- [tex]\((4, 0) \neq (-4, 0)\)[/tex]
- [tex]\((3, 2) \neq (-3, 2)\)[/tex]
- [tex]\((1, 2) \neq (-1, 2)\)[/tex]
None of the pairs match, so Table 3 does not represent the given relation.
### Conclusion:
Only Table 2 correctly represents the same relation as the set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].
### Given Relation:
The given set of pairs is:
[tex]\[ \{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\} \][/tex]
### Table 1:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & -3 \\ \hline 4 & 2 \\ \hline -4 & -1 \\ \hline 0 & 2 \\ \hline \end{array} \][/tex]
The pairs in Table 1 are:
[tex]\[ \{(-6, -3), (4, 2), (-4, -1), (0, 2)\} \][/tex]
Comparing these pairs to the given set:
- [tex]\((-6, -3) \neq (-6, 4)\)[/tex]
- [tex]\((4, 2) \neq (-4, 0) \text{ or any other pair in the given set}\)[/tex]
- [tex]\((-4, -1) \neq (-4, 0)\)[/tex]
- [tex]\((0, 2) \neq (-1, 2) \text{ or any other pair in the given set}\)[/tex]
We see that none of the pairs match, so Table 1 does not represent the given relation.
### Table 2:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -6 & 4 \\ \hline -4 & 0 \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline \end{array} \][/tex]
The pairs in Table 2 are:
[tex]\[ \{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\} \][/tex]
Comparing these pairs to the given set:
- [tex]\((-6, 4) = (-6, 4)\)[/tex]
- [tex]\((-4, 0) = (-4, 0)\)[/tex]
- [tex]\((-3, 2) = (-3, 2)\)[/tex]
- [tex]\((-1, 2) = (-1, 2)\)[/tex]
Each pair matches exactly, so Table 2 represents the given relation.
### Table 3:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 6 & 4 \\ \hline 4 & 0 \\ \hline 3 & 2 \\ \hline 1 & 2 \\ \hline \end{array} \][/tex]
The pairs in Table 3 are:
[tex]\[ \{(6, 4), (4, 0), (3, 2), (1, 2)\} \][/tex]
Comparing these pairs to the given set:
- [tex]\((6, 4) \neq (-6, 4)\)[/tex]
- [tex]\((4, 0) \neq (-4, 0)\)[/tex]
- [tex]\((3, 2) \neq (-3, 2)\)[/tex]
- [tex]\((1, 2) \neq (-1, 2)\)[/tex]
None of the pairs match, so Table 3 does not represent the given relation.
### Conclusion:
Only Table 2 correctly represents the same relation as the set [tex]\(\{(-6, 4), (-4, 0), (-3, 2), (-1, 2)\}\)[/tex].