2. Rewrite each statement using [tex]$\exists, \forall, \in$[/tex], and [tex]$|$[/tex] as appropriate.

a) There exists a positive number [tex][tex]$x$[/tex][/tex] belonging to the set [tex]$R$[/tex] such that [tex]$x^2 = 5$[/tex].
[tex]\[ \exists x \in \mathbb{R}^+ \, | \, x^2 = 5 \][/tex]

b) For every positive number [tex]$M$[/tex], there is a positive number [tex]$N$[/tex] such that [tex]$N \ \textless \ \frac{1}{M}$[/tex].
[tex]\[ \forall M \in \mathbb{R}^+ \, \exists N \in \mathbb{R}^+ \, | \, N \ \textless \ \frac{1}{M} \][/tex]

c) There exists [tex]$m$[/tex] which belongs to the set [tex]$M$[/tex].
[tex]\[ \exists m \in M \][/tex]



Answer :

Sure, let's rewrite each statement using the appropriate symbolic notation involving existential quantifiers ([tex]$\exists$[/tex]), universal quantifiers ([tex]$\forall$[/tex]), set membership ([tex]$\in$[/tex]), and logical conditions (|).

### a)
"There exists a positive number [tex]\(x\)[/tex] belonging to the set [tex]\(R\)[/tex] such that [tex]\(x^2 = 5\)[/tex]."

Using the appropriate symbolic notation, this can be written as:

[tex]\[ \exists x \in \mathbb{R}, \; x > 0 \; | \; x^2 = 5 \][/tex]

### b)
"For every positive number [tex]\(M\)[/tex] there is a positive number [tex]\(N\)[/tex] such that [tex]\(N < \frac{1}{M}\)[/tex]."

Using the appropriate symbolic notation, this can be written as:

[tex]\[ \forall M \in \mathbb{R}, \; M > 0, \; \exists N \in \mathbb{R}, \; N > 0 \; | \; N < \frac{1}{M} \][/tex]

### c)
"There exists [tex]\(m\)[/tex] which belongs to the set [tex]\(M\)[/tex]."

Using the appropriate symbolic notation, this can be written as:

[tex]\[ \exists m \in M \][/tex]

These symbolic statements succinctly capture the logical structure of the given sentences.