Describe the steps you would take to solve the given literal equation for [tex]\( m \)[/tex] as shown.

[tex]\[
\begin{array}{l}
t = 2 \pi \sqrt{\frac{m}{k}} \\
m = \frac{k t^2}{4 \pi^2}
\end{array}
\][/tex]



Answer :

Certainly! Let's find the steps required to solve the equation [tex]\( t = 2 \pi \sqrt{\frac{m}{k}} \)[/tex] for [tex]\( m \)[/tex].

### Step-by-Step Solution:

1. Start with the given equation:
[tex]\[ t = 2 \pi \sqrt{\frac{m}{k}} \][/tex]

2. Square both sides of the equation to eliminate the square root. Squaring [tex]\( t \)[/tex] and [tex]\( 2 \pi \sqrt{\frac{m}{k}} \)[/tex] gives:
[tex]\[ t^2 = \left(2 \pi \sqrt{\frac{m}{k}}\right)^2 \][/tex]

3. Simplify the right-hand side, noting that squaring [tex]\( 2 \pi \)[/tex] results in [tex]\( 4 \pi^2 \)[/tex] and squaring [tex]\( \sqrt{\frac{m}{k}} \)[/tex] results in [tex]\( \frac{m}{k} \)[/tex]:
[tex]\[ t^2 = 4 \pi^2 \left(\frac{m}{k}\right) \][/tex]

4. Isolate [tex]\( m \)[/tex] by multiplying both sides of the equation by [tex]\( k \)[/tex] to move [tex]\( \frac{1}{k} \)[/tex] on the right-hand side out of the fraction:
[tex]\[ t^2 k = 4 \pi^2 m \][/tex]

5. Solve for [tex]\( m \)[/tex] by dividing both sides of the equation by [tex]\( 4 \pi^2 \)[/tex]:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]

So, the literal equation solved for [tex]\( m \)[/tex] is:
[tex]\[ m = \frac{k t^2}{4 \pi^2} \][/tex]

This completes our step-by-step solution to isolate [tex]\( m \)[/tex] in the given equation.