Simplify.
[tex]\[ \left(\frac{3}{2}\right)^2 + 4 \div 2 \cdot 3 \][/tex]

A. [tex]\(\frac{75}{8}\)[/tex]
B. [tex]\(\frac{51}{4}\)[/tex]
C. [tex]\(\frac{25}{24}\)[/tex]
D. [tex]\(\frac{33}{4}\)[/tex]



Answer :

Sure, let's simplify the expression step-by-step:

Expression:
[tex]\[ \left(\frac{3}{2}\right)^2 + 4 \div 2 \cdot 3 \][/tex]

1. Simplify the expression within the parentheses:

[tex]\[ \left(\frac{3}{2}\right)^2 = \frac{3}{2} \times \frac{3}{2} = \frac{9}{4} \][/tex]

2. Handle the division and multiplication according to the order of operations (PEMDAS/BODMAS):

[tex]\[ 4 \div 2 \cdot 3 \][/tex]

First do the division:

[tex]\[ 4 \div 2 = 2 \][/tex]

Then, multiply the result by 3:

[tex]\[ 2 \cdot 3 = 6 \][/tex]

3. Add the results of the two parts:

[tex]\[ \frac{9}{4} + 6 \][/tex]

To add these, we need to convert 6 into a fraction with a common denominator:

[tex]\[ 6 = \frac{24}{4} \][/tex]

So the addition becomes:

[tex]\[ \frac{9}{4} + \frac{24}{4} = \frac{33}{4} \][/tex]

Final answer:

[tex]\(\boxed{\frac{33}{4}}\)[/tex]