Given the functions:

[tex]\[ h(x) = x^2 + 1 \quad k(x) = x - 2 \][/tex]

1. Evaluate [tex]\((h + k)(2)\)[/tex]
2. Evaluate [tex]\((h - k)(3)\)[/tex]

3. Evaluate [tex]\(3h(2) + 2k(3)\)[/tex]

[tex]\[
\begin{aligned}
(h + k)(2) &= 5 \\
(h - k)(3) &= 5 \\
3h(2) + 2k(3) &= 15 \\
\end{aligned}
\][/tex]

Correct Answers:

1. (h + k)(2) = 5
2. (h - k)(3) = 9
3. [tex]\(3h(2) + 2k(3) = 17\)[/tex]



Answer :

Certainly! Let's work through each part step-by-step.

### Step 1: Evaluating [tex]\((h + k)(2)\)[/tex]
We need to find [tex]\( h(2) \)[/tex] and [tex]\( k(2) \)[/tex], and then add them together.

1. Evaluate [tex]\( h(2) \)[/tex]:
[tex]\[ h(2) = 2^2 + 1 = 4 + 1 = 5 \][/tex]

2. Evaluate [tex]\( k(2) \)[/tex]:
[tex]\[ k(2) = 2 - 2 = 0 \][/tex]

Now, sum these values:
[tex]\[ (h + k)(2) = h(2) + k(2) = 5 + 0 = 5 \][/tex]

So, the answer for [tex]\((h + k)(2)\)[/tex] is:
[tex]\[ \boxed{5} \][/tex]

### Step 2: Evaluating [tex]\((h - k)(3)\)[/tex]
We need to find [tex]\( h(3) \)[/tex] and [tex]\( k(3) \)[/tex], and then subtract [tex]\( k(3) \)[/tex] from [tex]\( h(3) \)[/tex].

1. Evaluate [tex]\( h(3) \)[/tex]:
[tex]\[ h(3) = 3^2 + 1 = 9 + 1 = 10 \][/tex]

2. Evaluate [tex]\( k(3) \)[/tex]:
[tex]\[ k(3) = 3 - 2 = 1 \][/tex]

Now, subtract these values:
[tex]\[ (h - k)(3) = h(3) - k(3) = 10 - 1 = 9 \][/tex]

So, the answer for [tex]\((h - k)(3)\)[/tex] is:
[tex]\[ \boxed{9} \][/tex]

### Step 3: Evaluating [tex]\( 3h(2) + 2k(3) \)[/tex]
We already have [tex]\( h(2) \)[/tex] and [tex]\( k(3) \)[/tex] from the previous steps, which are [tex]\( 5 \)[/tex] and [tex]\( 1 \)[/tex] respectively.

1. Multiply [tex]\( h(2) \)[/tex] by 3:
[tex]\[ 3h(2) = 3 \times 5 = 15 \][/tex]

2. Multiply [tex]\( k(3) \)[/tex] by 2:
[tex]\[ 2k(3) = 2 \times 1 = 2 \][/tex]

Now, add these values:
[tex]\[ 3h(2) + 2k(3) = 15 + 2 = 17 \][/tex]

So, the answer for [tex]\( 3h(2) + 2k(3) \)[/tex] is:
[tex]\[ \boxed{17} \][/tex]

### Summary
Let's summarize all the answers we have found:
[tex]\[ \begin{array}{l} (h+k)(2) = \boxed{5} \\ (h-k)(3) = \boxed{9} \\ 3h(2) + 2k(3) = \boxed{17} \end{array} \][/tex]

These detailed steps show how we arrived at these results for each expression.