A quarterback throws a football to a teammate. The football is 6.5 ft above the ground when it leaves the quarterback's hand. His teammate catches it 3.5 s later, at a height above the ground of 5 ft.

Projectile motion formula:
[tex]\[ h(t) = -16t^2 + vt + h_0 \][/tex]
[tex]\[ h_0 = 6.5 \][/tex]
[tex]\[ v = \text{?} \][/tex]
[tex]\[ h = 5 \text{ when } t = 3.5 \][/tex]

Determine the value of [tex]\( v \)[/tex], rounded to the nearest whole number.

[tex]\[ v \approx \square \][/tex]



Answer :

To determine the initial velocity [tex]\( v \)[/tex] at which the quarterback must throw the football, we'll use the given information and the projectile motion formula:

[tex]\[ h(t) = -16t^2 + vt + h_0 \][/tex]

Given:
- The initial height [tex]\( h_0 = 6.5 \)[/tex] feet
- The final height [tex]\( h = 5 \)[/tex] feet when [tex]\( t = 3.5 \)[/tex] seconds

We need to find [tex]\( v \)[/tex].

Step 1: Substitute the known values into the projectile motion formula.

[tex]\[ h = -16t^2 + vt + h_0 \][/tex]

Substituting [tex]\( h = 5 \)[/tex], [tex]\( t = 3.5 \)[/tex], and [tex]\( h_0 = 6.5 \)[/tex]:

[tex]\[ 5 = -16(3.5)^2 + v(3.5) + 6.5 \][/tex]

Step 2: Simplify the equation.

First, calculate [tex]\( 3.5^2 \)[/tex]:

[tex]\[ 3.5^2 = 12.25 \][/tex]

Then multiply by -16:

[tex]\[ -16 \cdot 12.25 = -196 \][/tex]

So our equation becomes:

[tex]\[ 5 = -196 + 3.5v + 6.5 \][/tex]

Now, combine the constants on the right side (-196 and 6.5):

[tex]\[ 5 = -189.5 + 3.5v \][/tex]

Step 3: Solve for [tex]\( v \)[/tex].

Isolate [tex]\( v \)[/tex] by adding 189.5 to both sides of the equation:

[tex]\[ 5 + 189.5 = 3.5v \][/tex]

[tex]\[ 194.5 = 3.5v \][/tex]

Next, divide both sides by 3.5:

[tex]\[ v = \frac{194.5}{3.5} \][/tex]

Calculate the division:

[tex]\[ v \approx 55.5714285714286 \][/tex]

Step 4: Round [tex]\( v \)[/tex] to the nearest whole number.

[tex]\[ v \approx 56 \][/tex]

Thus, the initial velocity [tex]\( v \)[/tex], rounded to the nearest whole number, is:

[tex]\[ v \approx 56 \quad \text{feet per second} \][/tex]