Solve for [tex]b[/tex].

[tex] \frac{4}{3} b + 2 = 4 - \frac{1}{3} b [/tex]

A. [tex] b = 9 [/tex]
B. [tex] b = 10 [/tex]
C. [tex] b = \frac{10}{3} [/tex]
D. [tex] b = \frac{6}{5} [/tex]



Answer :

To solve the equation [tex]\(\frac{4}{3} b + 2 = 4 - \frac{1}{3} b\)[/tex] for [tex]\(b\)[/tex], follow these detailed steps:

1. Start with the given equation:
[tex]\[ \frac{4}{3}b + 2 = 4 - \frac{1}{3}b \][/tex]

2. Combine the [tex]\(b\)[/tex] terms on one side of the equation. To do this, add [tex]\(\frac{1}{3}b\)[/tex] to both sides to eliminate it from the right side:
[tex]\[ \frac{4}{3}b + \frac{1}{3}b + 2 = 4 \][/tex]

3. Simplify by combining like terms:
[tex]\[ \frac{5}{3}b + 2 = 4 \][/tex]

4. Isolate the term with the variable [tex]\(b\)[/tex]. Subtract 2 from both sides of the equation:
[tex]\[ \frac{5}{3}b = 4 - 2 \][/tex]

5. Simplify the right side of the equation:
[tex]\[ \frac{5}{3}b = 2 \][/tex]

6. Solve for [tex]\(b\)[/tex] by multiplying both sides by the reciprocal of [tex]\(\frac{5}{3}\)[/tex], which is [tex]\(\frac{3}{5}\)[/tex]:
[tex]\[ b = 2 \times \frac{3}{5} \][/tex]

7. Perform the multiplication:
[tex]\[ b = \frac{6}{5} \][/tex]

Thus, the solution to the equation [tex]\(\frac{4}{3} b + 2 = 4 - \frac{1}{3} b\)[/tex] is
[tex]\[ b = \frac{6}{5} \][/tex]

So, the correct answer is:
[tex]\[ b = \frac{6}{5} \][/tex]