Do Now:

1. Zero Exponents Rule

a) [tex]\((-6)^0 = 1\)[/tex]

b) [tex]\(x^0 = 1\)[/tex]

c) [tex]\(-(7)^0 = -1\)[/tex]

d) [tex]\((25xyz)^0 = 1\)[/tex]

e) [tex]\(y^0 = 1\)[/tex]

f) [tex]\(word^0 = 1\)[/tex]

REMEMBER: Anything to the zero power is 1.



Answer :

Let's solve each part of the question step-by-step, using the rule that any non-zero number raised to the zero power is [tex]\(1\)[/tex].

a) [tex]\((-6)^0\)[/tex]

According to the zero exponent rule, any non-zero number raised to the zero power is [tex]\(1\)[/tex]:

[tex]\[ (-6)^0 = 1 \][/tex]

b) [tex]\(x^0\)[/tex] and [tex]\(a^0\)[/tex]

Similarly:

[tex]\[ x^0 = 1 \][/tex]
[tex]\[ a^0 = 1 \][/tex]

c) [tex]\(-(7)^0\)[/tex]

Here, [tex]\(7^0\)[/tex] is calculated first, which is [tex]\(1\)[/tex]. Then, the negative sign is applied:

[tex]\[ -(7)^0 = -(1) = -1 \][/tex]

For the additional parts within section c:
[tex]\[ 3^0 = 1 \][/tex]
[tex]\[ (-3)^0 = 1 \ (since -3 is treated as a base and any non-zero number to the power of 0 is still 1) \][/tex]
[tex]\[ x^0 = 1 \][/tex]

d) [tex]\((25xyz)^0\)[/tex]

Regardless of the values of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex], as long as none of them are zero, the entire expression to the power of zero is [tex]\(1\)[/tex]:

[tex]\[ (25xyz)^0 = 1 \][/tex]

e) [tex]\(y^0\)[/tex]

[tex]\[ y^0 = 1 \][/tex]

f) [tex]\(\text{word}^0\)[/tex]

Assuming "word" is a non-zero variable:

[tex]\[ \text{word}^0 = 1 \][/tex]

In conclusion, applying the zero exponent rule accurately:

[tex]\[ (-6)^0 = 1 \][/tex]
[tex]\[ x^0 = 1 \][/tex]
[tex]\[ a^0 = 1 \][/tex]
[tex]\[ -(7)^0 = -1 \][/tex]
[tex]\[ 3^0 = 1 \][/tex]
[tex]\[ (-3)^0 = 1 \][/tex]
[tex]\[ x^0 = 1 \][/tex]
[tex]\[ (25xyz)^0 = 1 \][/tex]
[tex]\[ y^0 = 1 \][/tex]
[tex]\[ \text{word}^0 = 1 \][/tex]