\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & 9 \\
\hline
1 & 0 \\
\hline
4 & -7 \\
\hline
6 & -1 \\
\hline
\end{tabular}

What is the range of the given function?

A. [tex]$\{x \mid x=-5,1,4,6\}$[/tex]

B. [tex]$\{y \mid y=-7,-1,0,9\}$[/tex]

C. [tex]$\{x \mid x=-7,-5,-1,0,1,4,6,9\}$[/tex]

D. [tex]$\{y \mid y=-7,-5,-1,0,1,4,6,9\}$[/tex]



Answer :

To find the range of the given function, we need to identify the unique y-values presented in the table. The table provided is:

[tex]\[ \begin{tabular}{|c|c|} \hline x & y \\ \hline -5 & 9 \\ \hline 1 & 0 \\ \hline 4 & -7 \\ \hline 6 & -1 \\ \hline \end{tabular} \][/tex]

First, we list all the y-values from the table:

- When [tex]\(x = -5\)[/tex], [tex]\(y = 9\)[/tex]
- When [tex]\(x = 1\)[/tex], [tex]\(y = 0\)[/tex]
- When [tex]\(x = 4\)[/tex], [tex]\(y = -7\)[/tex]
- When [tex]\(x = 6\)[/tex], [tex]\(y = -1\)[/tex]

Now, we note down these y-values:

[tex]\[ 9, 0, -7, -1 \][/tex]

Next, we arrange these y-values in ascending order to form the range:

[tex]\[ -7, -1, 0, 9 \][/tex]

Therefore, the range of the given function is:

[tex]\(\{y \mid y = -7, -1, 0, 9\}\)[/tex]

So, the correct choice is:

[tex]\(\{y \mid y=-7, -1, 0, 9\}\)[/tex]