Answered

The set [tex]\( A \)[/tex] and its complement [tex]\( A^{\prime} \)[/tex] with respect to the universal set [tex]\( U \)[/tex] are given below.

[tex]\[
\begin{array}{l}
A = \{2, 3, 5, 7\} \\
A^{\prime} = \{1, 4, 8\}
\end{array}
\][/tex]

Find [tex]\( U \)[/tex].



Answer :

To find the universal set [tex]\( U \)[/tex], let's go through the steps step-by-step.

1. Identify the given sets:
[tex]\[ A = \{2, 3, 5, 7\} \][/tex]
[tex]\[ A' = \{1, 4, 8\} \][/tex]

2. Understanding the universal set [tex]\( U \)[/tex]:
The universal set [tex]\( U \)[/tex] contains all the elements that belong to either set [tex]\( A \)[/tex] or its complement [tex]\( A' \)[/tex]. This means that [tex]\( U \)[/tex] is the union of sets [tex]\( A \)[/tex] and [tex]\( A' \)[/tex].

3. Combine the elements of [tex]\( A \)[/tex] and [tex]\( A' \)[/tex]:
[tex]\[ U = A \cup A' \][/tex]

4. Union of the sets:
[tex]\[ U = \{2, 3, 5, 7\} \cup \{1, 4, 8\} \][/tex]

5. List all the unique elements in the union:
By combining the elements from both sets and ensuring no duplicates:
[tex]\[ U = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]

Thus, the universal set [tex]\( U \)[/tex] is:
[tex]\[ U = \{1, 2, 3, 4, 5, 7, 8\} \][/tex]