Simplify:

[tex]\[ \sqrt{28} \cdot \sqrt{27} \cdot \sqrt{5} \][/tex]

A. [tex]\( 7 \sqrt{15} \)[/tex]
B. [tex]\( 6 \sqrt{15} \)[/tex]
C. [tex]\( 6 \sqrt{105} \)[/tex]
D. [tex]\( 7 \sqrt{105} \)[/tex]



Answer :

To simplify the given expression [tex]\( \sqrt{28} \cdot \sqrt{27} \cdot \sqrt{5} \)[/tex], let's follow the step-by-step process:

1. Express the product of the square roots as a single square root:

[tex]\[ \sqrt{28} \cdot \sqrt{27} \cdot \sqrt{5} = \sqrt{28 \cdot 27 \cdot 5} \][/tex]

2. Calculate the product under the square root:

[tex]\[ 28 \cdot 27 \cdot 5 = 3780 \][/tex]

3. Simplify the square root of the product:

The expression becomes [tex]\( \sqrt{3780} \)[/tex].

4. Find the simplified form of [tex]\( \sqrt{3780} \)[/tex]:

- First, factorize 3780 into its prime factors:

[tex]\[ 3780 = 2^2 \cdot 3^3 \cdot 5 \cdot 7 \][/tex]

- Pair the perfect squares outside the square root:

[tex]\[ \sqrt{2^2 \cdot 3^3 \cdot 5 \cdot 7} = \sqrt{4 \cdot 27 \cdot 5 \cdot 7} = 2 \cdot 3 \cdot \sqrt{3 \cdot 5 \cdot 7} = 6 \cdot \sqrt{105} \][/tex]

Therefore, the simplified form of [tex]\( \sqrt{28} \cdot \sqrt{27} \cdot \sqrt{5} \)[/tex] is [tex]\( 6 \sqrt{105} \)[/tex].

Upon reviewing the provided options:
- [tex]\( 7 \sqrt{15} \)[/tex]
- [tex]\( 6 \sqrt{15} \)[/tex]
- [tex]\( 6 \sqrt{105} \)[/tex]
- [tex]\( 7 \sqrt{105} \)[/tex]

The correct answer is:
[tex]\( 6 \sqrt{105} \)[/tex]