Based on the data shown below, calculate the correlation coefficient (to three decimal places).

[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
2 & 13.92 \\
\hline
3 & 16.63 \\
\hline
4 & 19.24 \\
\hline
5 & 19.55 \\
\hline
6 & 21.56 \\
\hline
7 & 20.97 \\
\hline
8 & 26.08 \\
\hline
9 & 24.79 \\
\hline
10 & 28.4 \\
\hline
11 & 28.91 \\
\hline
12 & 30.12 \\
\hline
13 & 34.43 \\
\hline
14 & 33.84 \\
\hline
15 & 36.75 \\
\hline
\end{array}
\][/tex]

[tex]\[ r = \][/tex]



Answer :

To calculate the correlation coefficient [tex]\(r\)[/tex] between the two variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex], let's follow these steps:

1. Identify the given data:

The respective `x` and `y` values are:
[tex]\[ x: [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] \][/tex]
[tex]\[ y: [13.92, 16.63, 19.24, 19.55, 21.56, 20.97, 26.08, 24.79, 28.4, 28.91, 30.12, 34.43, 33.84, 36.75] \][/tex]

2. Calculate the correlation coefficient:

The correlation coefficient [tex]\(r\)[/tex] is calculated using the formula:

[tex]\[ r = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \][/tex]

where [tex]\(\text{cov}(x, y)\)[/tex] is the covariance of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], and [tex]\(\sigma_x\)[/tex] and [tex]\(\sigma_y\)[/tex] are the standard deviations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], respectively.

3. Using statistical methods, we find that:
- The covariance [tex]\(\text{cov}(x, y)\)[/tex] between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] can be computed.
- The standard deviations [tex]\(\sigma_x\)[/tex] and [tex]\(\sigma_y\)[/tex] for [tex]\(x\)[/tex] and [tex]\(y\)[/tex] can be computed using provided data.
- Using these computations, the correlation coefficient [tex]\(r\)[/tex] will be determined.

4. Compute the correlation coefficient matrix:

- The correlation coefficient matrix for variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex] is a 2x2 matrix where the value at position (0,1) and (1,0) is the correlation coefficient between [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

5. Extract the correlation coefficient:

The correlation coefficient between [tex]\(x\)[/tex] and [tex]\(y\)[/tex] is found to be approximately [tex]\(0.9877573914478209\)[/tex].

6. Round to three decimal places:

Finally, we round this correlation coefficient to three decimal places:

[tex]\[ r \approx 0.988 \][/tex]

Therefore, the correlation coefficient [tex]\(r\)[/tex] is:

[tex]\[ r = 0.988 \][/tex]