Sure, let’s solve for [tex]\( n \)[/tex] step-by-step.
Given the equation: [tex]\[ d = 2m + 3n \][/tex]
We want to isolate [tex]\( n \)[/tex].
1. Subtract [tex]\( 2m \)[/tex] from both sides of the equation to start isolating the term with [tex]\( n \)[/tex]: [tex]\[ d - 2m = 3n \][/tex]
2. Now, to solve for [tex]\( n \)[/tex], divide both sides of the equation by 3: [tex]\[ \frac{d - 2m}{3} = n \][/tex]
Therefore, the solution for [tex]\( n \)[/tex] in terms of [tex]\( d \)[/tex] and [tex]\( m \)[/tex] is: [tex]\[ n = \frac{d}{3} - \frac{2m}{3} \][/tex]