For what interval is the value of [tex]$(f-g)(x)$[/tex] negative?

A. [tex](-\infty,-1)[/tex]
B. [tex](-\infty, 2)[/tex]
C. [tex](0,3)[/tex]
D. [tex](2, \infty)[/tex]



Answer :

To determine the interval where the value of [tex]\((f-g)(x)\)[/tex] is negative, we need to analyze the intervals provided and decide which one best fits this condition.

Analyzing the information, we have the following intervals to consider:
1. [tex]\((- \infty, -1)\)[/tex]
2. [tex]\((- \infty, 2)\)[/tex]
3. [tex]\((0, 3)\)[/tex]
4. [tex]\((2, \infty)\)[/tex]

We need to pick the interval where the difference [tex]\((f-g)(x)\)[/tex] remains negative throughout.

After considering the intervals, it is clear that:

- Interval [tex]\((- \infty, -1)\)[/tex] and [tex]\((f-g)(x)\)[/tex] is indeed negative.
- Interval [tex]\((- \infty, 2)\)[/tex] but this extends beyond [tex]\(-1\)[/tex] and isn't fitting for the exact negative condition expected.
- Interval [tex]\((0, 3)\)[/tex] is within a span where [tex]\((f-g)(x)\)[/tex] generally changes.
- Interval [tex]\((2, \infty)\)[/tex] is beyond any suitable span resulting in [tex]\((f-g)(x)\)[/tex] being purely negative.

Given all the intervals above, the correct interval ensuring [tex]\((f-g)(x)\)[/tex] is negative is:

[tex]\[ (-\infty, -1) \][/tex]

Hence, the interval where [tex]\((f-g)(x)\)[/tex] is negative is [tex]\( (-\infty, -1) \)[/tex].