Answer :
To determine the phenotype fractions for each genotype combination resulting from a dihybrid cross of BbEe x BbEe, we need to ascertain the predicted fur color and eye color for each possible genotype combination. Below is the step-by-step solution of the predicted fractions for each phenotype:
### Punnett Square Combination:
Parent genotypes: BbEe x BbEe
Possible gametes (combinations of alleles each parent can pass on):
- BE
- Be
- bE
- be
### Phenotype Determination:
- Fur Color: B (dominant) -> Black, b (recessive) -> White
- Eye Color: E (dominant) -> Black, e (recessive) -> Red
### Formation of the Punnett Square:
We form a 4x4 Punnett Square by combining each pair of gametes:
| \\ | BE | Be | bE | be |
|---|----|----|----|----|
| BE | BBEE | BB Ee | Bb EE | Bb Ee |
| Be | BB Ee | BB ee | Bb Ee | Bb ee |
| bE| Bb EE | Bb Ee | bb EE | bb Ee |
| be| Bb Ee | Bb ee | bb Ee | bb ee |
### Genotype to Phenotype Mapping:
- BBEE, BbEE, BB Ee, Bb Ee -> Black Fur and Black Eyes
- BB ee, Bb ee -> Black Fur and Red Eyes
- bb EE, bb Ee -> White Fur and Black Eyes
- bb ee -> White Fur and Red Eyes
### Counting the Phenotype Frequencies:
- Black Fur and Black Eyes:
- BBEE, BbEE, BB Ee, Bb Ee: 9 combinations
- Black Fur and Red Eyes:
- BB ee, Bb ee: 3 combinations
- White Fur and Black Eyes:
- bb EE, bb Ee: 3 combinations
- White Fur and Red Eyes:
- bb ee: 1 combination
### Predicted Phenotype Fractions:
The total number of combinations from the Punnett Square is 16 (4x4).
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \multicolumn{1}{c|}{} & \begin{tabular}{c} Black Fur and \\ Black Eyes \end{tabular} & \begin{tabular}{c} Black Fur and \\ Red Eyes \end{tabular} & \begin{tabular}{c} White Fur and \\ Black Eyes \end{tabular} & \begin{tabular}{c} White Fur and \\ Red Eyes \end{tabular} \\ \hline Predicted Fraction & \frac{9}{16} & \frac{3}{16} & \frac{3}{16} & \frac{1}{16} \\ \hline \end{array} \][/tex]
Thus, the predicted fractions for each phenotype are:
- Black Fur and Black Eyes: [tex]\(\frac{9}{16}\)[/tex]
- Black Fur and Red Eyes: [tex]\(\frac{3}{16}\)[/tex]
- White Fur and Black Eyes: [tex]\(\frac{3}{16}\)[/tex]
- White Fur and Red Eyes: [tex]\(\frac{1}{16}\)[/tex]
### Punnett Square Combination:
Parent genotypes: BbEe x BbEe
Possible gametes (combinations of alleles each parent can pass on):
- BE
- Be
- bE
- be
### Phenotype Determination:
- Fur Color: B (dominant) -> Black, b (recessive) -> White
- Eye Color: E (dominant) -> Black, e (recessive) -> Red
### Formation of the Punnett Square:
We form a 4x4 Punnett Square by combining each pair of gametes:
| \\ | BE | Be | bE | be |
|---|----|----|----|----|
| BE | BBEE | BB Ee | Bb EE | Bb Ee |
| Be | BB Ee | BB ee | Bb Ee | Bb ee |
| bE| Bb EE | Bb Ee | bb EE | bb Ee |
| be| Bb Ee | Bb ee | bb Ee | bb ee |
### Genotype to Phenotype Mapping:
- BBEE, BbEE, BB Ee, Bb Ee -> Black Fur and Black Eyes
- BB ee, Bb ee -> Black Fur and Red Eyes
- bb EE, bb Ee -> White Fur and Black Eyes
- bb ee -> White Fur and Red Eyes
### Counting the Phenotype Frequencies:
- Black Fur and Black Eyes:
- BBEE, BbEE, BB Ee, Bb Ee: 9 combinations
- Black Fur and Red Eyes:
- BB ee, Bb ee: 3 combinations
- White Fur and Black Eyes:
- bb EE, bb Ee: 3 combinations
- White Fur and Red Eyes:
- bb ee: 1 combination
### Predicted Phenotype Fractions:
The total number of combinations from the Punnett Square is 16 (4x4).
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline \multicolumn{1}{c|}{} & \begin{tabular}{c} Black Fur and \\ Black Eyes \end{tabular} & \begin{tabular}{c} Black Fur and \\ Red Eyes \end{tabular} & \begin{tabular}{c} White Fur and \\ Black Eyes \end{tabular} & \begin{tabular}{c} White Fur and \\ Red Eyes \end{tabular} \\ \hline Predicted Fraction & \frac{9}{16} & \frac{3}{16} & \frac{3}{16} & \frac{1}{16} \\ \hline \end{array} \][/tex]
Thus, the predicted fractions for each phenotype are:
- Black Fur and Black Eyes: [tex]\(\frac{9}{16}\)[/tex]
- Black Fur and Red Eyes: [tex]\(\frac{3}{16}\)[/tex]
- White Fur and Black Eyes: [tex]\(\frac{3}{16}\)[/tex]
- White Fur and Red Eyes: [tex]\(\frac{1}{16}\)[/tex]