Select the correct answer.

If the range of the function [tex]f(x)=\frac{x}{4}[/tex] is [tex]\(\{28, 30, 32, 34, 36\}\)[/tex], what is its domain?

A. [tex]\(\{112, 120, 128, 136, 144\}\)[/tex]

B. [tex]\(\{118, 122, 124, 132, 145\}\)[/tex]

C. [tex]\(\{110, 118, 122, 124, 137\}\)[/tex]

D. [tex]\(\{111, 124, 128, 132, 146\}\)[/tex]



Answer :

To determine the domain of the function [tex]\( f(x) = \frac{x}{4} \)[/tex] given that its range is [tex]\(\{28, 30, 32, 34, 36\}\)[/tex], we need to find the values of [tex]\( x \)[/tex] such that [tex]\( f(x) \)[/tex] equals each of these range values.

Given the range values [tex]\( \{28, 30, 32, 34, 36\} \)[/tex], you can set up equations for each value as follows:

1. [tex]\( f(x) = 28 \)[/tex] implies that:
[tex]\[ \frac{x}{4} = 28 \][/tex]
Multiplying both sides by 4, we get:
[tex]\[ x = 28 \times 4 = 112 \][/tex]

2. [tex]\( f(x) = 30 \)[/tex] implies that:
[tex]\[ \frac{x}{4} = 30 \][/tex]
Multiplying both sides by 4, we get:
[tex]\[ x = 30 \times 4 = 120 \][/tex]

3. [tex]\( f(x) = 32 \)[/tex] implies that:
[tex]\[ \frac{x}{4} = 32 \][/tex]
Multiplying both sides by 4, we get:
[tex]\[ x = 32 \times 4 = 128 \][/tex]

4. [tex]\( f(x) = 34 \)[/tex] implies that:
[tex]\[ \frac{x}{4} = 34 \][/tex]
Multiplying both sides by 4, we get:
[tex]\[ x = 34 \times 4 = 136 \][/tex]

5. [tex]\( f(x) = 36 \)[/tex] implies that:
[tex]\[ \frac{x}{4} = 36 \][/tex]
Multiplying both sides by 4, we get:
[tex]\[ x = 36 \times 4 = 144 \][/tex]

Therefore, the domain corresponding to the given range [tex]\(\{28, 30, 32, 34, 36\}\)[/tex] is [tex]\(\{112, 120, 128, 136, 144\}\)[/tex].

Thus, the correct answer is:
A. [tex]\(\{112, 120, 128, 136, 144\}\)[/tex]