Select the correct answer.

Rewrite the following equation as a function of [tex]x[/tex].

[tex]\[ 680x + 10y - 1000 = 0 \][/tex]

A. [tex]f(x) = 100 + 68x[/tex]
B. [tex]f(x) = \frac{1}{100} - \frac{1}{68}x[/tex]
C. [tex]f(x) = 100 - 68x[/tex]
D. [tex]f(x) = \frac{1}{100} + \frac{1}{68}x[/tex]



Answer :

To rewrite the given equation [tex]\(680x + 10y - 1000 = 0\)[/tex] as a function of [tex]\(x\)[/tex], we need to isolate [tex]\(y\)[/tex] on one side of the equation. Here are the detailed steps:

1. Start with the given equation:
[tex]\[ 680x + 10y - 1000 = 0 \][/tex]

2. Move [tex]\(680x\)[/tex] and [tex]\(-1000\)[/tex] to the right side of the equation by adding [tex]\(-680x\)[/tex] and [tex]\(1000\)[/tex] to both sides:
[tex]\[ 10y = -680x + 1000 \][/tex]

3. Solve for [tex]\(y\)[/tex] by dividing every term by 10:
[tex]\[ y = \frac{-680x + 1000}{10} \][/tex]

4. Simplify the fractions:
[tex]\[ y = -68x + 100 \][/tex]

So, we can express [tex]\(y\)[/tex] as a function of [tex]\(x\)[/tex]:
[tex]\[ f(x) = 100 - 68x \][/tex]

Therefore, the correct answer is:

C. [tex]\(f(x) = 100 - 68x\)[/tex]