Answered

Which of these equations is correct?

A. [tex]\left(2^2\right)^4 = 2^6[/tex]

B. [tex]\left(3^5\right)^{-2} = \frac{1}{3^{-10}}[/tex]

C. [tex]\left(5^{-3}\right)^6 = \frac{1}{5^{18}}[/tex]

D. [tex]\left(8^3\right)^2 = 8^9[/tex]



Answer :

Sure, let's verify the correctness of each equation step by step.

### Equation A: [tex]\(\left(2^2\right)^4 = 2^6\)[/tex]
1. Calculate the left-hand side (LHS):
[tex]\[ \left(2^2\right)^4 = 4^4 = 256 \][/tex]
2. Calculate the right-hand side (RHS):
[tex]\[ 2^6 = 64 \][/tex]
3. Compare the LHS and RHS:
[tex]\[ 256 \neq 64 \][/tex]
Therefore, Equation A is incorrect.

### Equation B: [tex]\(\left(3^5\right)^{-2} = \frac{1}{3^{-10}}\)[/tex]
1. Calculate the LHS:
[tex]\[ \left(3^5\right)^{-2} = 3^{5 \cdot (-2)} = 3^{-10} \][/tex]
2. Calculate the RHS:
[tex]\[ \frac{1}{3^{-10}} = 3^{10} \quad (\text{since} \; a^{-n} = \frac{1}{a^n}) \][/tex]
3. Compare the LHS and RHS:
[tex]\[ 3^{-10} \neq 3^{10} \][/tex]
Therefore, Equation B is incorrect.

### Equation C: [tex]\(\left(5^{-3}\right)^6 = \frac{1}{5^{18}}\)[/tex]
1. Calculate the LHS:
[tex]\[ \left(5^{-3}\right)^6 = 5^{-3 \cdot 6} = 5^{-18} \][/tex]
2. Calculate the RHS:
[tex]\[ \frac{1}{5^{18}} = 5^{-18} \quad (\text{since} \; \frac{1}{a^n} = a^{-n}) \][/tex]
3. Compare the LHS and RHS:
[tex]\[ 5^{-18} = 5^{-18} \][/tex]
Therefore, Equation C is correct.

### Equation D: [tex]\(\left(8^3\right)^2 = 8^9\)[/tex]
1. Calculate the LHS:
[tex]\[ \left(8^3\right)^2 = 8^{3 \cdot 2} = 8^6 \][/tex]
2. Calculate the RHS:
[tex]\[ 8^9 \][/tex]
3. Compare the LHS and RHS:
[tex]\[ 8^6 \neq 8^9 \][/tex]
Therefore, Equation D is incorrect.

In conclusion, the correct equation is:
[tex]\[ \boxed{C} \][/tex]