23. बिन्दुहरू [tex]$(1,3)$[/tex] र [tex]$(5,7)$[/tex] बाट बराबर दुरीमा पर्ने बिन्दुको बिन्दुपथमा बिन्दु [tex]$(4,4)$[/tex] पर्दछ भनी प्रमाणित गर्नुहोस् ।

Prove that the point [tex]$(4,4)$[/tex] lies on the locus of a point which is equidistant from the points [tex]$(1,3)$[/tex] and [tex]$(5,7)$[/tex].



Answer :

To prove that the point [tex]\((4,4)\)[/tex] lies on the locus of points equidistant from [tex]\((1,3)\)[/tex] and [tex]\((5,7)\)[/tex], we need to show that the distance from [tex]\((4,4)\)[/tex] to [tex]\((1,3)\)[/tex] is the same as the distance from [tex]\((4,4)\)[/tex] to [tex]\((5,7)\)[/tex].

1. Distance Formula: The formula to calculate the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

2. Calculate Distance from [tex]\((4,4)\)[/tex] to [tex]\((1,3)\)[/tex]:
[tex]\[ d_1 = \sqrt{(4 - 1)^2 + (4 - 3)^2} \][/tex]
Simplifying inside the square root:
[tex]\[ d_1 = \sqrt{(3)^2 + (1)^2} \][/tex]
[tex]\[ d_1 = \sqrt{9 + 1} \][/tex]
[tex]\[ d_1 = \sqrt{10} \][/tex]
Therefore,
[tex]\[ d_1 \approx 3.1622776601683795 \][/tex]

3. Calculate Distance from [tex]\((4,4)\)[/tex] to [tex]\((5,7)\)[/tex]:
[tex]\[ d_2 = \sqrt{(4 - 5)^2 + (4 - 7)^2} \][/tex]
Simplifying inside the square root:
[tex]\[ d_2 = \sqrt{(-1)^2 + (-3)^2} \][/tex]
[tex]\[ d_2 = \sqrt{1 + 9} \][/tex]
[tex]\[ d_2 = \sqrt{10} \][/tex]
Therefore,
[tex]\[ d_2 \approx 3.1622776601683795 \][/tex]

4. Compare the Distances:
[tex]\[ d_1 \approx 3.1622776601683795 \][/tex]
[tex]\[ d_2 \approx 3.1622776601683795 \][/tex]

Since [tex]\(d_1\)[/tex] is equal to [tex]\(d_2\)[/tex], the point [tex]\((4,4)\)[/tex] is equidistant from both [tex]\((1,3)\)[/tex] and [tex]\((5,7)\)[/tex].

Therefore, the point [tex]\((4,4)\)[/tex] lies on the locus of points which are equidistant from [tex]\((1,3)\)[/tex] and [tex]\((5,7)\)[/tex].