```latex
\{(-2,4), (0,2), (-1,3), (4,-2)\}
```

The set of ordered pairs above:

The mapping diagram above:

```latex
y = x^4
```

```latex
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & 5 \\
\hline
-1 & 2 \\
\hline
1 & -1 \\
\hline
-1 & 4 \\
\hline
\end{tabular}
```

The table above:



Answer :

Alright, let's walk through the given question step-by-step to understand and interpret the results.

### 1. The Set of Ordered Pairs

We have a given set of ordered pairs:
[tex]\[ \{ (-2, 4), (0, 2), (-1, 3), (4, -2) \} \][/tex]

### 2. The Mapping Diagram for [tex]\( y = x^4 \)[/tex]

We need to map each [tex]\( x \)[/tex] from the ordered pairs to [tex]\( y \)[/tex] using the function [tex]\( y = x^4 \)[/tex].

Let's compute the function for each [tex]\( x \)[/tex]:

- For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 4^4 = 256 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0^4 = 0 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = (-1)^4 = 1 \][/tex]
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = (-2)^4 = 16 \][/tex]

This gives the mapping diagram as:
[tex]\[ \{ 4 \rightarrow 256, 0 \rightarrow 0, -1 \rightarrow 1, -2 \rightarrow 16 \} \][/tex]

### 3. The Given Table of Pairs

We also have a table of pairs:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -3 & 5 \\ \hline -1 & 2 \\ \hline 1 & -1 \\ \hline -1 & 4 \\ \hline \end{tabular} \][/tex]

### Summary

To put it all together:

- The given set of ordered pairs is:
[tex]\[ \{(4, -2), (0, 2), (-1, 3), (-2, 4)\} \][/tex]

- The mapping diagram based on [tex]\( y = x^4 \)[/tex] is:
[tex]\[ \{4 \rightarrow 256, 0 \rightarrow 0, -1 \rightarrow 1, -2 \rightarrow 16\} \][/tex]

- The additional table of pairs provided is:
[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $y$ \\ \hline -3 & 5 \\ \hline -1 & 2 \\ \hline 1 & -1 \\ \hline -1 & 4 \\ \hline \end{tabular} \][/tex]

Thus, we have consolidated and explained the information given comprehensively.