Fill in the missing number so that [tex]r=5 \sqrt{3}[/tex] is a solution of the equation.

[tex]\[ r^2 + \square = 0 \][/tex]

What are the two solutions to this equation? Write your answer in simplified, rationalized form.

[tex]\[ r = 5 \sqrt{3} \text{ and } r = \][/tex]
[tex]\[ \square \][/tex]



Answer :

To solve the given problem, we need to determine the constant that allows [tex]\( r = 5\sqrt{3} \)[/tex] to be a solution for the equation [tex]\( r^2 + \square = 0 \)[/tex]. Let's work through this step-by-step.

Firstly, if [tex]\( r = 5\sqrt{3} \)[/tex], we need to substitute this value into the equation [tex]\( r^2 + c = 0 \)[/tex] to find the value of [tex]\( c \)[/tex].

1. Compute [tex]\( r^2 \)[/tex]:
[tex]\[ r = 5\sqrt{3} \][/tex]
[tex]\[ r^2 = (5\sqrt{3})^2 \][/tex]
[tex]\[ r^2 = 25 \times 3 \][/tex]
[tex]\[ r^2 = 75 \][/tex]

2. Now, substitute [tex]\( r^2 = 75 \)[/tex] into the equation [tex]\( r^2 + c = 0 \)[/tex]:
[tex]\[ 75 + c = 0 \][/tex]

3. Solve for [tex]\( c \)[/tex]:
[tex]\[ c = -75 \][/tex]

So, the equation [tex]\( r^2 + \square = 0 \)[/tex] becomes:
[tex]\[ r^2 - 75 = 0 \][/tex]

To find the solutions to the equation [tex]\( r^2 - 75 = 0 \)[/tex], we solve for [tex]\( r \)[/tex]:

[tex]\[ r^2 = 75 \][/tex]
[tex]\[ r = \pm\sqrt{75} \][/tex]

Simplifying the square root:
[tex]\[ r = \pm\sqrt{75} = \pm\sqrt{25 \times 3} = \pm 5\sqrt{3} \][/tex]

Therefore, the two solutions to the equation are:
[tex]\[ r = 5\sqrt{3} \quad \text{and} \quad r = -5\sqrt{3} \][/tex]

Summarizing, the completed problem and the solutions are:

The missing number is:
[tex]\[ -75 \][/tex]

and the two solutions to the equation are:
[tex]\[ r = 5\sqrt{3} \quad \text{and} \quad r = -5\sqrt{3} \][/tex]