Solve the following problem and choose the best answer.

Which of the following is equivalent to [tex]$|-12 + 3|$[/tex]?

A. [tex]$-12 + |3|$[/tex]
B. [tex][tex]$-12 - |3|$[/tex][/tex]
C. [tex]$12 - |3|$[/tex]
D. [tex]$12 + |3|$[/tex]



Answer :

To solve the problem of finding which expression is equivalent to [tex]\( |-12 + 3| \)[/tex], we need to follow these steps:

1. Compute the value of [tex]\( |-12 + 3| \)[/tex]:
[tex]\[ -12 + 3 = -9 \][/tex]
Taking the absolute value of [tex]\(-9\)[/tex], we get:
[tex]\[ |-9| = 9 \][/tex]

2. Evaluate each of the given expressions:
- For [tex]\(-12 + |3|\)[/tex]:
[tex]\[ -12 + |3| = -12 + 3 = -9 \][/tex]

- For [tex]\(-12 - |3|\)[/tex]:
[tex]\[ -12 - |3| = -12 - 3 = -15 \][/tex]

- For [tex]\(12 - |3|\)[/tex]:
[tex]\[ 12 - |3| = 12 - 3 = 9 \][/tex]

- For [tex]\(12 + |3|\)[/tex]:
[tex]\[ 12 + |3| = 12 + 3 = 15 \][/tex]

3. Compare each evaluated expression with the computed absolute value [tex]\(9\)[/tex].

From our evaluations:
- [tex]\(-12 + |3| = -9\)[/tex]
- [tex]\(-12 - |3| = -15\)[/tex]
- [tex]\(12 - |3| = 9\)[/tex]
- [tex]\(12 + |3| = 15\)[/tex]

The expression [tex]\(12 - |3|\)[/tex] evaluates to [tex]\(9\)[/tex], which is equivalent to [tex]\(|-12 + 3|\)[/tex].

Therefore, the correct answer is:
[tex]\[ 12 - |3| \][/tex]

Which corresponds to the third option.