On a number line, suppose point [tex]$E$[/tex] has a coordinate of -4, and [tex]$EG = 5$[/tex]. What are the possible coordinates of point [tex]$G$[/tex]?



Answer :

To determine the possible coordinates of point [tex]\( G \)[/tex] on a number line, we start with point [tex]\( E \)[/tex] having a coordinate of [tex]\(-4\)[/tex] and the distance [tex]\( E G \)[/tex] given as [tex]\( 5 \)[/tex]. This means point [tex]\( G \)[/tex] is 5 units away from point [tex]\( E \)[/tex].

Since the distance on a number line can be in either direction (to the right or to the left), we need to consider both possibilities.

1. Move to the right:
If we move 5 units to the right of [tex]\(-4\)[/tex], we can find the coordinate of [tex]\( G \)[/tex] by adding 5 to [tex]\(-4\)[/tex]:
[tex]\[ G_1 = -4 + 5 = 1 \][/tex]

2. Move to the left:
Alternatively, if we move 5 units to the left of [tex]\(-4\)[/tex], we can find the coordinate of [tex]\( G \)[/tex] by subtracting 5 from [tex]\(-4\)[/tex]:
[tex]\[ G_2 = -4 - 5 = -9 \][/tex]

So, the possible coordinates of point [tex]\( G \)[/tex] are [tex]\( 1 \)[/tex] and [tex]\(-9\)[/tex].

Hence, the coordinates of point [tex]\( G \)[/tex] can be [tex]\( 1 \)[/tex] or [tex]\(-9\)[/tex].