(ii) Hence solve the equations:

[tex]\[
\begin{array}{l}
12 I_1 + 12 I_2 - 6 I_3 = -18 \\
-6 I_1 + 12 I_2 + 12 I_3 = 0 \\
12 I_1 - 6 I_2 + 12 I_3 = 72
\end{array}
\][/tex]

(12 marks)



Answer :

To solve the system of equations:

[tex]\[ \begin{aligned} 12I_1 + 12I_2 - 6I_3 &= -18 \quad \quad \quad \quad(1) \\ -6I_1 + 12I_2 + 12I_3 &= 0 \quad \quad \quad \quad(2) \\ 12I_1 - 6I_2 + 12I_3 &= 72 \quad \quad \quad \quad(3) \end{aligned} \][/tex]

we can use matrix methods to find the values for [tex]\( I_1 \)[/tex], [tex]\( I_2 \)[/tex], and [tex]\( I_3 \)[/tex].

1. Formulate the system as a matrix equation [tex]\( AX = B \)[/tex]:

First, we write the coefficient matrix [tex]\( A \)[/tex]:

[tex]\[ A = \begin{pmatrix} 12 & 12 & -6 \\ -6 & 12 & 12 \\ 12 & -6 & 12 \end{pmatrix} \][/tex]

Next, we write the constant matrix [tex]\( B \)[/tex]:

[tex]\[ B = \begin{pmatrix} -18 \\ 0 \\ 72 \end{pmatrix} \][/tex]

Then, the unknowns matrix [tex]\( X \)[/tex]:

[tex]\[ X = \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} \][/tex]

The system of equations can be rewritten as:

[tex]\[ AX = B \][/tex]

2. Solve the matrix equation [tex]\( AX = B \)[/tex] for [tex]\(X\)[/tex]:

We use matrix operations to find [tex]\( X \)[/tex]. The solution matrix [tex]\( X \)[/tex] can be found using the inverse of matrix [tex]\( A \)[/tex] if it exists, such that:

[tex]\[ X = A^{-1}B \][/tex]

However, for convenience, we use known methods or computational tools that provide the solution directly.

By solving:

[tex]\[ \begin{aligned} X &= \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} \\ &= \begin{pmatrix} 2.0 \\ -2.0 \\ 3.0 \end{pmatrix} \end{aligned} \][/tex]

Thus, the solutions to the system of equations are:

[tex]\[ I_1 = 2.0, \quad I_2 = -2.0, \quad I_3 = 3.0 \][/tex]