Given the rectangular equation [tex]3x^2 + 2y^2 = 18[/tex]. Choose the correct first step(s) in converting this to polar form.

Select one or more:

A. [tex]3(r \cos \theta)^2 + (2r \sin \theta)^2 = 18[/tex]

B. None of these

C. [tex]r^2 = 3[/tex]

D. [tex](r \cos \theta)^2 + (2r \sin \theta)^2 = 81[/tex]



Answer :

To convert the given rectangular equation [tex]\(3x^2 + 2y^2 = 18\)[/tex] to polar form, we need to use the relationships between rectangular coordinates [tex]\((x, y)\)[/tex] and polar coordinates [tex]\((r, \theta)\)[/tex]. Specifically, use the substitutions:
[tex]\[ x = r \cos(\theta) \][/tex]
[tex]\[ y = r \sin(\theta) \][/tex]

Let’s substitute [tex]\(x = r \cos(\theta)\)[/tex] and [tex]\(y = r \sin(\theta)\)[/tex] into the given equation:

[tex]\[ 3x^2 + 2y^2 = 18 \][/tex]

Substituting the expressions for [tex]\(x\)[/tex] and [tex]\(y\)[/tex], we get:

[tex]\[ 3 (r \cos(\theta))^2 + 2 (r \sin(\theta))^2 = 18 \][/tex]

Now, let's simplify this expression step by step:

1. Substitute [tex]\(x\)[/tex] and [tex]\(y\)[/tex] with their polar forms:
[tex]\[ 3 (r \cos(\theta))^2 + 2 (r \sin(\theta))^2 = 18 \][/tex]

2. Simplify each term:
[tex]\[ 3 (r^2 \cos^2(\theta)) + 2 (r^2 \sin^2(\theta)) = 18 \][/tex]

3. Factor out [tex]\(r^2\)[/tex]:
[tex]\[ r^2 (3 \cos^2(\theta) + 2 \sin^2(\theta)) = 18 \][/tex]

So, the correct first step(s) to convert the equation into polar form corresponds to option (a):

[tex]\[ 3(r \cos(\theta))^2 + 2 (r \sin(\theta))^2 = 18 \][/tex]

Therefore, the correct answer is:
a. [tex]\(3(r \cos(\theta))^2 + 2 (r \sin(\theta))^2 = 18\)[/tex]

Other Questions