Select the correct answer.

The table represents quadratic function [tex]g[/tex]. Which statement is true about the function?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -5 & -4 & -3 & -2 & -1 & 0 \\
\hline[tex]$g(x)$[/tex] & -1 & 0 & -1 & -4 & -9 & -16 \\
\hline
\end{tabular}

A. The minimum occurs at the function's [tex]$x$[/tex]-intercept.
B. The maximum occurs at the function's [tex]$x$[/tex]-intercept.
C. The maximum occurs at the function's [tex]$y$[/tex]-intercept.
D. The minimum occurs at the function's [tex]$y$[/tex]-intercept.



Answer :

To determine the correct statement about the quadratic function [tex]\( g(x) \)[/tex] given by the table:

[tex]\[ \begin{array}{|c|c|c|c|c|c|c|} \hline x & -5 & -4 & -3 & -2 & -1 & 0 \\ \hline g(x) & -1 & 0 & -1 & -4 & -9 & -16 \\ \hline \end{array} \][/tex]

we need to analyze the function's behavior.

1. Identify the function type:

The function [tex]\( g(x) \)[/tex] is quadratic because it appears to follow a parabolic shape, typical of quadratic functions.

2. Determine the minimum (or maximum) value:

For a quadratic function, the vertex represents either the minimum or maximum value of the function. After examining the given values, we observe that [tex]\( g(x) \)[/tex] reaches its lowest value of [tex]\(-16\)[/tex] at [tex]\( x = 0 \)[/tex].

3. Verify the y-intercept:

The y-intercept of the function is the value of [tex]\( g(x) \)[/tex] when [tex]\( x = 0 \)[/tex]. From the table, we see [tex]\( g(0) = -16 \)[/tex]. Therefore, the minimum value occurs at the point where the function intersects the y-axis.

4. Conclusion:

Based on this analysis, the minimum value of [tex]\( g(x) \)[/tex] occurs at the function's y-intercept, specifically when [tex]\( x = 0 \)[/tex].

Therefore, the correct statement about the quadratic function [tex]\( g(x) \)[/tex] is:
[tex]\[ \boxed{D. \text{The minimum occurs at the function's y-intercept.}} \][/tex]