Using the information in the table to the right, calculate the average atomic mass of strontium. Report to two decimal places.

\begin{tabular}{|r|r|r|}
\hline \multicolumn{3}{|c|}{Strontium} \\
\hline \multicolumn{1}{|c|}{Isotope} & \multicolumn{1}{|c|}{Mass (amu)} & Abundance \\
\hline [tex]$Sr-84$[/tex] & 83.913428 & [tex]$0.56 \%$[/tex] \\
\hline [tex]$Sr-86$[/tex] & 85.909273 & [tex]$9.86 \%$[/tex] \\
\hline [tex]$Sr-87$[/tex] & 86.908902 & [tex]$7.00 \%$[/tex] \\
\hline [tex]$Sr-88$[/tex] & 87.905625 & [tex]$82.58 \%$[/tex] \\
\hline
\end{tabular}



Answer :

To calculate the average atomic mass of strontium using the given data, we can follow these steps:

1. List the masses and abundances of the isotopes:
- [tex]\( Sr-84 \)[/tex]: Mass = 83.913428 amu, Abundance = 0.56%
- [tex]\( Sr-86 \)[/tex]: Mass = 85.909273 amu, Abundance = 9.86%
- [tex]\( Sr-87 \)[/tex]: Mass = 86.908902 amu, Abundance = 7.00%
- [tex]\( Sr-88 \)[/tex]: Mass = 87.905625 amu, Abundance = 82.58%

2. Convert the percentage abundances to fractions:
- [tex]\( Sr-84 \)[/tex]: [tex]\( 0.56\% = \frac{0.56}{100} = 0.0056 \)[/tex]
- [tex]\( Sr-86 \)[/tex]: [tex]\( 9.86\% = \frac{9.86}{100} = 0.0986 \)[/tex]
- [tex]\( Sr-87 \)[/tex]: [tex]\( 7.00\% = \frac{7.00}{100} = 0.0700 \)[/tex]
- [tex]\( Sr-88 \)[/tex]: [tex]\( 82.58\% = \frac{82.58}{100} = 0.8258 \)[/tex]

3. Multiply each isotope's mass by its fractional abundance:
- [tex]\( Sr-84 \)[/tex]: [tex]\( 83.913428 \times 0.0056 \)[/tex]
- [tex]\( Sr-86 \)[/tex]: [tex]\( 85.909273 \times 0.0986 \)[/tex]
- [tex]\( Sr-87 \)[/tex]: [tex]\( 86.908902 \times 0.0700 \)[/tex]
- [tex]\( Sr-88 \)[/tex]: [tex]\( 87.905625 \times 0.8258 \)[/tex]

4. Sum these products to find the average atomic mass:
[tex]\[ \text{Average atomic mass} = (83.913428 \times 0.0056) + (85.909273 \times 0.0986) + (86.908902 \times 0.0700) + (87.905625 \times 0.8258) \][/tex]

5. Calculate each term separately:
- [tex]\( 83.913428 \times 0.0056 = 0.4703155968 \)[/tex]
- [tex]\( 85.909273 \times 0.0986 = 8.4707100878 \)[/tex]
- [tex]\( 86.908902 \times 0.0700 = 6.08362314 \)[/tex]
- [tex]\( 87.905625 \times 0.8258 = 72.592008955 \)[/tex]

6. Sum the calculated products:
[tex]\[ 0.4703155968 + 8.4707100878 + 6.08362314 + 72.592008955 = 87.6166577796 \][/tex]

7. Round the result to two decimal places:
[tex]\[ 87.6166577796 \approx 87.62 \][/tex]

Therefore, the average atomic mass of strontium is [tex]\( 87.62 \)[/tex] amu.