What is the product of the rational expressions below?

[tex]\[ \frac{x+5}{x+7} \cdot \frac{10x}{x-7} \][/tex]

A. [tex]\[ \frac{10x^2+50x}{x^2-49} \][/tex]

B. [tex]\[ \frac{10x^2+50x}{x^2-14} \][/tex]

C. [tex]\[ \frac{10x^2+5}{x^2-49} \][/tex]

D. [tex]\[ \frac{10x^2+50x}{x^2} \][/tex]



Answer :

To find the product of the given rational expressions:
[tex]\[ \frac{x+5}{x+7} \cdot \frac{10x}{x-7} \][/tex]

we will multiply the numerators together and the denominators together.

### Step-by-Step Solution:

1. Write down the given expressions:

[tex]\[ \frac{x+5}{x+7} \quad \text{and} \quad \frac{10x}{x-7} \][/tex]

2. Multiply the numerators:

[tex]\[ (x + 5) \cdot 10x = 10x(x + 5) \][/tex]

3. Multiply the denominators:

[tex]\[ (x + 7) \cdot (x - 7) \][/tex]

4. Combine the results to form one fraction:

[tex]\[ \frac{10x(x + 5)}{(x + 7)(x - 7)} \][/tex]

5. Simplify the denominator using the difference of squares formula:

[tex]\[ (x + 7)(x - 7) = x^2 - 49 \][/tex]

6. Re-write the product with the simplified denominator:

[tex]\[ \frac{10x(x + 5)}{x^2 - 49} \][/tex]

7. Expanding the numerator (optional for clarity):

[tex]\[ 10x(x + 5) = 10x^2 + 50x \][/tex]

8. The final simplified product of the rational expressions is then:

[tex]\[ \frac{10x^2 + 50x}{x^2 - 49} \][/tex]

### Conclusion:

Upon reviewing the options provided:

A. [tex]\(\frac{10x^2 + 50x}{x^2 - 49}\)[/tex]

B. [tex]\(\frac{10x^2 + 50x}{x^2 - 14}\)[/tex]

C. [tex]\(\frac{10x^2 + 5}{x^2 - 49}\)[/tex]

D. [tex]\(\frac{10x^2 + 50x}{x^2}\)[/tex]

The correct answer is:
[tex]\[ \boxed{\frac{10x^2 + 50x}{x^2 - 49}} \][/tex]

which matches option A.