Answer :
To find the difference of the rational expressions [tex]\(\frac{9}{x^2} - \frac{2x + 1}{8x}\)[/tex], we can follow these steps:
### Step 1: Getting a Common Denominator
The first rational expression is [tex]\(\frac{9}{x^2}\)[/tex], and the second is [tex]\(\frac{2x + 1}{8x}\)[/tex].
To subtract these expressions, we need a common denominator.
The common denominator for [tex]\(x^2\)[/tex] and [tex]\(8x\)[/tex] is [tex]\(8x^2\)[/tex].
### Step 2: Express Each Fraction with the Common Denominator
Let's express each fraction with this common denominator [tex]\(8x^2\)[/tex].
First fraction:
[tex]\[ \frac{9}{x^2} = \frac{9 \cdot 8x}{x^2 \cdot 8x} = \frac{72x}{8x^2} \][/tex]
Second fraction:
[tex]\[ \frac{2x + 1}{8x} = \frac{(2x + 1) \cdot x}{8x \cdot x} = \frac{2x^2 + x}{8x^2} \][/tex]
### Step 3: Subtract the Fractions
Now subtract the second fraction from the first using the common denominator [tex]\(8x^2\)[/tex]:
[tex]\[ \frac{72x}{8x^2} - \frac{2x^2 + x}{8x^2} = \frac{72x - (2x^2 + x)}{8x^2} \][/tex]
Simplify the numerator:
[tex]\[ 72x - (2x^2 + x) = 72x - 2x^2 - x = -2x^2 + 71x \][/tex]
### Step 4: Write the Final Expression
The difference of the rational expressions is:
[tex]\[ \frac{-2x^2 + 71x}{8x^2} \][/tex]
We can match this result with the provided options:
A. [tex]\(\frac{-2x + 8}{8x^2}\)[/tex]
B. [tex]\(\frac{-2x^2 + x + 72}{8x^2}\)[/tex]
C. [tex]\(\frac{-2x + 10}{8x^2}\)[/tex]
D. [tex]\(\frac{-2x^2 - x + 72}{8x^2}\)[/tex]
It appears none of the provided answer choices match exactly with [tex]\(\frac{-2x^2 + 71x}{8x^2}\)[/tex]. Therefore, it's possible the solution or the given answer choices have an error or a typo. However, based on our detailed work, the difference of these rational expressions is:
[tex]\[ \boxed{\frac{-2x^2 + 71x}{8x^2}} \][/tex]
### Step 1: Getting a Common Denominator
The first rational expression is [tex]\(\frac{9}{x^2}\)[/tex], and the second is [tex]\(\frac{2x + 1}{8x}\)[/tex].
To subtract these expressions, we need a common denominator.
The common denominator for [tex]\(x^2\)[/tex] and [tex]\(8x\)[/tex] is [tex]\(8x^2\)[/tex].
### Step 2: Express Each Fraction with the Common Denominator
Let's express each fraction with this common denominator [tex]\(8x^2\)[/tex].
First fraction:
[tex]\[ \frac{9}{x^2} = \frac{9 \cdot 8x}{x^2 \cdot 8x} = \frac{72x}{8x^2} \][/tex]
Second fraction:
[tex]\[ \frac{2x + 1}{8x} = \frac{(2x + 1) \cdot x}{8x \cdot x} = \frac{2x^2 + x}{8x^2} \][/tex]
### Step 3: Subtract the Fractions
Now subtract the second fraction from the first using the common denominator [tex]\(8x^2\)[/tex]:
[tex]\[ \frac{72x}{8x^2} - \frac{2x^2 + x}{8x^2} = \frac{72x - (2x^2 + x)}{8x^2} \][/tex]
Simplify the numerator:
[tex]\[ 72x - (2x^2 + x) = 72x - 2x^2 - x = -2x^2 + 71x \][/tex]
### Step 4: Write the Final Expression
The difference of the rational expressions is:
[tex]\[ \frac{-2x^2 + 71x}{8x^2} \][/tex]
We can match this result with the provided options:
A. [tex]\(\frac{-2x + 8}{8x^2}\)[/tex]
B. [tex]\(\frac{-2x^2 + x + 72}{8x^2}\)[/tex]
C. [tex]\(\frac{-2x + 10}{8x^2}\)[/tex]
D. [tex]\(\frac{-2x^2 - x + 72}{8x^2}\)[/tex]
It appears none of the provided answer choices match exactly with [tex]\(\frac{-2x^2 + 71x}{8x^2}\)[/tex]. Therefore, it's possible the solution or the given answer choices have an error or a typo. However, based on our detailed work, the difference of these rational expressions is:
[tex]\[ \boxed{\frac{-2x^2 + 71x}{8x^2}} \][/tex]