Let [tex]$f$[/tex] and [tex]$g$[/tex] be two real functions defined by [tex]$f(x)=\sqrt{x-1}$[/tex] and [tex]$g(x)=3-2x$[/tex].

Based on the above information, answer the following question:

(i) The domain of [tex]$f$[/tex] is

A. [tex]$(1, \infty)$[/tex]
B. [tex]$[1, \infty)$[/tex]
C. [tex]$(-\infty, 1)$[/tex]
D. [tex]$(-\infty, 1]$[/tex]



Answer :

Let's determine the domain of the function [tex]\( f(x) = \sqrt{x-1} \)[/tex].

### Step-by-Step Solution:

1. Understand the Function:
- The function [tex]\( f(x) = \sqrt{x-1} \)[/tex] involves a square root. For the square root to be defined in the real numbers, the expression inside the square root must be non-negative.

2. Set Up the Inequality:
- Since the square root function is only defined for non-negative values, we need [tex]\( x-1 \geq 0 \)[/tex].

3. Solve the Inequality:
- Solving the inequality [tex]\( x-1 \geq 0 \)[/tex]:
[tex]\[ x-1 \geq 0 \implies x \geq 1 \][/tex]

4. Determine the Domain:
- The solution [tex]\( x \geq 1 \)[/tex] implies that [tex]\( x \)[/tex] can be 1 or any number greater than 1. Therefore, [tex]\( x \)[/tex] ranges from 1 to infinity, including 1 itself.

5. Interval Notation:
- In interval notation, this is written as [tex]\( [1, \infty) \)[/tex].

So the domain of [tex]\( f(x) = \sqrt{x-1} \)[/tex] is [tex]\( [1, \infty) \)[/tex].

### Conclusion:
The correct option for the domain of [tex]\( f \)[/tex] is:

(b) [tex]\( [1, \infty) \)[/tex]