Answer :
Let's solve the problem step-by-step.
1. Determining the Quotient and Remainders
a)
The problem asks for the quotient of two numbers, which isn't specified here. Based on typical mathematical operations, we can assume that we need to perform a division and find the quotient. Without further information, we can skip this part since it's not essential for solving part 8.
b)
Given: [tex]\( \text{Quotient} = 15119 \)[/tex]
c)
Given: [tex]\( \text{Quotient} = 15419 \)[/tex] and [tex]\( \text{Remainder} = 611 \)[/tex]
d)
Given: [tex]\( \text{Quotient} = 15319 \)[/tex] and [tex]\( \text{Remainder} = 611 \)[/tex]
2. Calculation of the Example in Part 8
Let's break down and solve the arithmetic expression provided in part 8:
[tex]\[ 525725 \times (650 \div 13) + 600785760 - (520 \times 375) \][/tex]
First, we need to compute the value of [tex]\( 650 \div 13 \)[/tex]:
[tex]\[ 650 \div 13 = 50 \][/tex]
Next, we use this quotient to compute:
[tex]\[ 525725 \times 50 \][/tex]
[tex]\[ 525725 \times 50 = 26286250 \][/tex]
Now, the other given part of the expression is:
[tex]\[ 600785760 \][/tex]
Then we need to compute:
[tex]\[ 520 \times 375 \][/tex]
[tex]\[ 520 \times 375 = 195000 \][/tex]
Finally, we combine all these parts according to the given operations:
[tex]\[ 26286250 + 600785760 - 195000 \][/tex]
Let's make these calculations step-by-step:
[tex]\[ 26286250 + 600785760 = 627072010 \][/tex]
[tex]\[ 627072010 - 195000 = 626877010 \][/tex]
Therefore, the final result of the given arithmetic expression is:
[tex]\[ 626877010 \][/tex]
In summary, the value of the expression in part 8 is [tex]\( 626877010 \)[/tex].
1. Determining the Quotient and Remainders
a)
The problem asks for the quotient of two numbers, which isn't specified here. Based on typical mathematical operations, we can assume that we need to perform a division and find the quotient. Without further information, we can skip this part since it's not essential for solving part 8.
b)
Given: [tex]\( \text{Quotient} = 15119 \)[/tex]
c)
Given: [tex]\( \text{Quotient} = 15419 \)[/tex] and [tex]\( \text{Remainder} = 611 \)[/tex]
d)
Given: [tex]\( \text{Quotient} = 15319 \)[/tex] and [tex]\( \text{Remainder} = 611 \)[/tex]
2. Calculation of the Example in Part 8
Let's break down and solve the arithmetic expression provided in part 8:
[tex]\[ 525725 \times (650 \div 13) + 600785760 - (520 \times 375) \][/tex]
First, we need to compute the value of [tex]\( 650 \div 13 \)[/tex]:
[tex]\[ 650 \div 13 = 50 \][/tex]
Next, we use this quotient to compute:
[tex]\[ 525725 \times 50 \][/tex]
[tex]\[ 525725 \times 50 = 26286250 \][/tex]
Now, the other given part of the expression is:
[tex]\[ 600785760 \][/tex]
Then we need to compute:
[tex]\[ 520 \times 375 \][/tex]
[tex]\[ 520 \times 375 = 195000 \][/tex]
Finally, we combine all these parts according to the given operations:
[tex]\[ 26286250 + 600785760 - 195000 \][/tex]
Let's make these calculations step-by-step:
[tex]\[ 26286250 + 600785760 = 627072010 \][/tex]
[tex]\[ 627072010 - 195000 = 626877010 \][/tex]
Therefore, the final result of the given arithmetic expression is:
[tex]\[ 626877010 \][/tex]
In summary, the value of the expression in part 8 is [tex]\( 626877010 \)[/tex].