Answer :
Let's go through each part of the question step by step.
### 1.1.1 Formula to represent Chloe's total expenses:
To find out Chloe's total expenses, we need to consider both the fixed cost (rent for the stall) and the variable cost (cost per tortilla).
Let's denote:
- Fixed cost as [tex]\( F \)[/tex],
- Cost per tortilla as [tex]\( c \)[/tex],
- Number of tortillas as [tex]\( n \)[/tex].
Chloe's total expenses formula can be written as:
[tex]\[ \text{Total Expenses} = F + (c \times n) \][/tex]
Here:
- [tex]\( F = 500 \)[/tex] R (the rent for the stall),
- [tex]\( c = 5 \)[/tex] R (cost to make one tortilla).
So, the formula becomes:
[tex]\[ \text{Total Expenses} = 500 + (5 \times n) \][/tex]
### 1.1.2 Table of Chloe's expenses:
Let's calculate Chloe's expenses for selling 0, 50, 100, 150, 200, and 250 tortillas and create a table.
[tex]\[ \begin{array}{|l|c|c|c|c|c|c|} \hline \text{Number of tortillas} & 0 & 50 & 100 & 150 & 200 & 250 \\ \hline \text{Total Expenses (R)} & 500 & 750 & 1000 & 1250 & 1500 & 1750 \\ \hline \end{array} \][/tex]
### 1.1.3 Drawing the line graphs:
On the same set of axes, draw the following lines:
- Total Income vs. Number of Tortillas:
- From the given data, Total Income = [tex]\( 15 \times \text{Number of tortillas} \)[/tex].
- Total Expenses vs. Number of Tortillas:
- From the given data, Total Expenses = [tex]\( 500 + 5 \times \text{Number of tortillas} \)[/tex].
Plot the points from the tables provided for both the Total Income and Total Expenses on the graph, and connect them to form lines. Ensure to label the graphs accordingly.
### 1.1.4 Minimum number of tortillas to break even:
To determine the break-even point, where Total Income equals Total Expenses, we need to solve the following equation:
[tex]\[ \text{Total Income} = \text{Total Expenses} \][/tex]
Using the formulas:
[tex]\[ 15n = 500 + 5n \][/tex]
Subtract [tex]\( 5n \)[/tex] from both sides:
[tex]\[ 10n = 500 \][/tex]
Divide by 10:
[tex]\[ n = 50 \][/tex]
So, Chloe must sell at least 50 tortillas to break even.
### 1.1.5 Income and expense statement for 240 tortillas:
Chloe's profit can be calculated by first determining her total income and total expenses for selling 240 tortillas:
- Total Income:
[tex]\[ \text{Total Income} = 15 \times 240 = 3600 \, \text{R} \][/tex]
- Total Expenses:
Let's use the expenses formula:
[tex]\[ \text{Total Expenses} = 500 + (5 \times 240) = 500 + 1200 = 1700 \, \text{R} \][/tex]
- Profit:
[tex]\[ \text{Profit} = \text{Total Income} - \text{Total Expenses} \][/tex]
[tex]\[ \text{Profit} = 3600 - 1700 = 1900 \, \text{R} \][/tex]
So, we can fill in the income and expense statement as follows:
[tex]\[ \begin{array}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{\text{Income}} & \multicolumn{2}{c|}{\text{Expense}} \\ \hline \begin{array}{l} \text{Sale of} \\ \text{240 tortillas} \end{array} & 3600 \, \text{R} & \text{Fixed cost} & 500 \, \text{R} \\ \hline && \begin{array}{l} \text{Cost of each} \\ \text{tortilla} \end{array} & 5 \, \text{R} \\ \hline \text{Total Income} & 3600 \, \text{R} & \text{Total Cost of 240 tortillas} & 1700 \, \text{R} \\ \hline && \text{Profit} & 1900 \, \text{R} \\ \hline \end{array} \][/tex]
This completes the detailed, step-by-step solution for the given question.
### 1.1.1 Formula to represent Chloe's total expenses:
To find out Chloe's total expenses, we need to consider both the fixed cost (rent for the stall) and the variable cost (cost per tortilla).
Let's denote:
- Fixed cost as [tex]\( F \)[/tex],
- Cost per tortilla as [tex]\( c \)[/tex],
- Number of tortillas as [tex]\( n \)[/tex].
Chloe's total expenses formula can be written as:
[tex]\[ \text{Total Expenses} = F + (c \times n) \][/tex]
Here:
- [tex]\( F = 500 \)[/tex] R (the rent for the stall),
- [tex]\( c = 5 \)[/tex] R (cost to make one tortilla).
So, the formula becomes:
[tex]\[ \text{Total Expenses} = 500 + (5 \times n) \][/tex]
### 1.1.2 Table of Chloe's expenses:
Let's calculate Chloe's expenses for selling 0, 50, 100, 150, 200, and 250 tortillas and create a table.
[tex]\[ \begin{array}{|l|c|c|c|c|c|c|} \hline \text{Number of tortillas} & 0 & 50 & 100 & 150 & 200 & 250 \\ \hline \text{Total Expenses (R)} & 500 & 750 & 1000 & 1250 & 1500 & 1750 \\ \hline \end{array} \][/tex]
### 1.1.3 Drawing the line graphs:
On the same set of axes, draw the following lines:
- Total Income vs. Number of Tortillas:
- From the given data, Total Income = [tex]\( 15 \times \text{Number of tortillas} \)[/tex].
- Total Expenses vs. Number of Tortillas:
- From the given data, Total Expenses = [tex]\( 500 + 5 \times \text{Number of tortillas} \)[/tex].
Plot the points from the tables provided for both the Total Income and Total Expenses on the graph, and connect them to form lines. Ensure to label the graphs accordingly.
### 1.1.4 Minimum number of tortillas to break even:
To determine the break-even point, where Total Income equals Total Expenses, we need to solve the following equation:
[tex]\[ \text{Total Income} = \text{Total Expenses} \][/tex]
Using the formulas:
[tex]\[ 15n = 500 + 5n \][/tex]
Subtract [tex]\( 5n \)[/tex] from both sides:
[tex]\[ 10n = 500 \][/tex]
Divide by 10:
[tex]\[ n = 50 \][/tex]
So, Chloe must sell at least 50 tortillas to break even.
### 1.1.5 Income and expense statement for 240 tortillas:
Chloe's profit can be calculated by first determining her total income and total expenses for selling 240 tortillas:
- Total Income:
[tex]\[ \text{Total Income} = 15 \times 240 = 3600 \, \text{R} \][/tex]
- Total Expenses:
Let's use the expenses formula:
[tex]\[ \text{Total Expenses} = 500 + (5 \times 240) = 500 + 1200 = 1700 \, \text{R} \][/tex]
- Profit:
[tex]\[ \text{Profit} = \text{Total Income} - \text{Total Expenses} \][/tex]
[tex]\[ \text{Profit} = 3600 - 1700 = 1900 \, \text{R} \][/tex]
So, we can fill in the income and expense statement as follows:
[tex]\[ \begin{array}{|l|l|l|l|} \hline \multicolumn{2}{|c|}{\text{Income}} & \multicolumn{2}{c|}{\text{Expense}} \\ \hline \begin{array}{l} \text{Sale of} \\ \text{240 tortillas} \end{array} & 3600 \, \text{R} & \text{Fixed cost} & 500 \, \text{R} \\ \hline && \begin{array}{l} \text{Cost of each} \\ \text{tortilla} \end{array} & 5 \, \text{R} \\ \hline \text{Total Income} & 3600 \, \text{R} & \text{Total Cost of 240 tortillas} & 1700 \, \text{R} \\ \hline && \text{Profit} & 1900 \, \text{R} \\ \hline \end{array} \][/tex]
This completes the detailed, step-by-step solution for the given question.