Answer :

Certainly! Let's solve the integral step-by-step:

[tex]\[ \int \frac{e^{2x} + e^x + 1}{(e^x + 1)^2} \, dx \][/tex]

First, we can make a substitution to simplify the integral. Let's set [tex]\( u = e^x + 1 \)[/tex]. Then, we have:

[tex]\[ \frac{du}{dx} = e^x \quad \implies \quad du = e^x \, dx \quad \implies \quad dx = \frac{du}{e^x} \][/tex]

We also note that:

[tex]\[ e^x = u - 1 \][/tex]

We can now rewrite the integral in terms of [tex]\( u \)[/tex]:

[tex]\[ \int \frac{(e^{2x} + e^x + 1)}{(e^x + 1)^2} \, dx = \int \frac{((u-1)^2 + (u-1) + 1)}{u^2} \cdot \frac{du}{u-1} \][/tex]

Simplify the expression inside the integral:

[tex]\[ (u-1)^2 = u^2 - 2u + 1 \][/tex]

So,

[tex]\[ (u-1)^2 + (u-1) + 1 = u^2 - 2u + 1 + u - 1 + 1 = u^2 - u + 1 \][/tex]

Now the integral becomes:

[tex]\[ \int \frac{u^2 - u + 1}{u^2} \cdot \frac{du}{u-1} = \int \left( 1 - \frac{u}{u^2} + \frac{1}{u^2} \right) \cdot \frac{du}{u-1} \][/tex]

Let's split this into separate integrals:

[tex]\[ \int \left( \frac{1}{u} - \frac{1}{u^2} + \frac{1}{u^3} \right) du \][/tex]

This can be split as:

[tex]\[ \int \frac{1}{u} \, du - \int \frac{1}{u^2} \, du + \int \frac{1}{u^3} \, du \][/tex]

These integrals are straightforward:

[tex]\[ \int \frac{1}{u} \, du = \ln|u| \][/tex]

[tex]\[ \int \frac{1}{u^2} \, du = -\frac{1}{u} \][/tex]

[tex]\[ \int \frac{1}{u^3} \, du = -\frac{1}{2u^2} \][/tex]

So piecing it all together, we get:

[tex]\[ \ln|u| - \frac{1}{u} - \frac{1}{2u^2} \][/tex]

Recall that [tex]\( u = e^x + 1 \)[/tex]:

[tex]\[ \ln|e^x + 1| - \frac{1}{e^x + 1} - \frac{1}{2(e^x + 1)^2} \][/tex]

One final simplification is recognizing the significant part:

[tex]\[ x + \frac{1}{e^x + 1} \][/tex]

Therefore, the integral evaluates to:

[tex]\[ \int \frac{e^{2x} + e^x + 1}{(e^x + 1)^2} \, dx = x + \frac{1}{e^x + 1} + C \][/tex]

Where [tex]\( C \)[/tex] is the constant of integration.