Answer :

We start with the equation given:

[tex]\[ \frac{1}{z} = 7 - 4 \sqrt{3} \][/tex]

We need to solve for [tex]\( z \)[/tex]. To do this, we take the reciprocal of both sides of the equation:

[tex]\[ z = \frac{1}{7 - 4 \sqrt{3}} \][/tex]

Next, we'll rationalize the denominator. We multiply the numerator and the denominator by the conjugate of the denominator [tex]\( 7 + 4\sqrt{3} \)[/tex]:

[tex]\[ z = \frac{1}{7 - 4 \sqrt{3}} \cdot \frac{7 + 4 \sqrt{3}}{7 + 4 \sqrt{3}} = \frac{7 + 4\sqrt{3}}{(7 - 4\sqrt{3})(7 + 4\sqrt{3})} \][/tex]

We then simplify the denominator using the difference of squares:

[tex]\[ (7 - 4 \sqrt{3})(7 + 4 \sqrt{3}) = 7^2 - (4 \sqrt{3})^2 = 49 - 48 = 1 \][/tex]

This simplifies to:

[tex]\[ z = 7 + 4 \sqrt{3} \][/tex]

Now, we need to find [tex]\( z^2 \)[/tex]:

[tex]\[ z^2 = (7 + 4 \sqrt{3})^2 \][/tex]

Using the binomial expansion formula [tex]\( (a+b)^2 = a^2 + 2ab + b^2 \)[/tex], we calculate:

[tex]\[ (7 + 4 \sqrt{3})^2 = 7^2 + 2 \cdot 7 \cdot 4 \sqrt{3} + (4 \sqrt{3})^2 \][/tex]

Simplifying each term, we get:

[tex]\[ 7^2 = 49 \][/tex]

[tex]\[ 2 \cdot 7 \cdot 4 \sqrt{3} = 56 \sqrt{3} \][/tex]

[tex]\[ (4 \sqrt{3})^2 = 16 \cdot 3 = 48 \][/tex]

Adding these results together:

[tex]\[ (7 + 4 \sqrt{3})^2 = 49 + 56 \sqrt{3} + 48 = 97 + 56 \sqrt{3} \][/tex]

Thus,

[tex]\[ z^2 = 97 + 56 \sqrt{3} \][/tex]

Finally, we are asked to find [tex]\( z^2 - z^2 \)[/tex]:

[tex]\[ z^2 - z^2 = (97 + 56 \sqrt{3}) - (97 + 56 \sqrt{3}) = 0 \][/tex]

So, the value of [tex]\( z^2 - z^2 \)[/tex] is:

[tex]\[ \boxed{0} \][/tex]